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ABSTRACT 

Antimicrobial resistance to the effects of antibiotics has caused a significant public health problem with reduced 

effectiveness of standard treatments. Resistance occurs through various mechanisms such as genetic mutations, horizontal 

gene transfer, and selective pressure from the widespread use of antimicrobials. Antibiotic resistance requires genomic 

insights, new technologies, and innovative solutions. In the treatment of respiratory infections, mainly caused by 

Streptococcus pneumoniae, Hemophilus influenzae, Chlamydia pneumoniae, Mycoplasma pneumoniae, Streptococcus 

piogenes and Moraxella catarralis, inappropriate use of antibiotics leads to the development of resistant bacteria. 

Pathogens can develop different specific mechanisms to avoid the effect of the antibiotic. Continuous therapeutic 

treatments with the same antibiotics can induce resistance, and therefore, research for developing new antibiotics is 

necessary to address pathogen resistance and ensure effective treatment. 
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INTRODUCTION 

Antimicrobial resistance refers to the ability of microorganisms, such as bacteria, viruses, fungi, and parasites, to 

withstand the effects of medications that once effectively treated them. This phenomenon is a significant public health 

concern as it leads to the reduced efficacy of standard treatments, prolonged illnesses, increased mortality, and the need 

for more potent and potentially toxic medications. Resistance arises through various mechanisms, including genetic 

mutations, horizontal gene transfer, and selective pressure from the widespread use of antimicrobials. Understanding and 

addressing pathogen resistance is critical for maintaining the effectiveness of current treatments and for the development 

of new therapeutic strategies. 

Antimicrobial resistance is a dynamic and evolving challenge in modern medicine (1,2). Recent advancements and 

emerging trends highlight the complexity of this issue and the need for innovative solutions. Several new methods to 

combat resistance that are gaining attention in the scientific community include genomic insights and clustered regularly 

interspaced short palindromic repeats (CRISPR) technology, antibiotic stewardship programs, phage therapy, 

antimicrobial peptides (AMPs) and novel compounds, microbiome modulation, and global surveillance and big data (3-

7). 
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DISCUSSION 

The inappropriate use of antibiotics for treating respiratory infections, in which they are not necessarily required leads 

to the development of resistant bacterial strains, as well as unnecessarily exposing the patient to the adverse reactions of 

the pharmacological treatment and leading to a waste of economic resources. The most common etiological agents in 

bacterial respiratory infections are Streptococcus pneumoniae, Haemophilus influenzae, Chlamydia pneumoniae, 

Mycoplasma pneumoniae, Streptococcus piogenes, and Moraxella catarralis. 

S. pneumoniae is a gram-positive bacterium and a leading cause of pneumonia, meningitis, otitis media, and 

bacteremia, particularly in children and the elderly (8). It is encapsulated, which helps it evade the host's immune system. 

S. pneumoniae has developed resistance primarily through alterations in penicillin-binding proteins (PBPs), reducing the 

efficacy of beta-lactam antibiotics (9). Additionally, resistance to macrolides occurs via modification of the ribosomal 

target site or efflux mechanisms that expel the antibiotic from the bacterial cell (10). The emergence of multi-drug-

resistant strains complicates treatment and highlights the need for ongoing surveillance and development of new 

antibiotics or vaccines (11). 

Numerous studies have been conducted on the distribution of resistance of S. pneumoniae, the most common 

etiological agent of community-acquired pneumonia (CAP), to the most widely used antibiotics (beta-lactams and 

macrolides) (12-14). Pneumococci are germs that are highly sensitive to penicillin, both the natural versions, such as 

penicillin G, and the semi-synthetic versions, such as aminopenicillins (amoxocillin), with a minimum inhibitory 

concentration (MIC) of 0.01 m/ml and 0.03 m/ml respectively. However, the chemo-sensitivity of pneumococci to 

beta-lactams has undergone a notable change over the years due to the development of new local resistance (15). 

Penicillin was produced in 1940 and was the first antibiotic used in infectious diseases (16), but penicillin-resistant 

strains of S. pneumoniae already appeared in 1970 with structural modifications of the PBPs of the bacterium preventing 

inhibition by the antibiotic of bacterial peptidoglycan synthesis (17). Macrolides were therefore used to treat 

pneumococcal infections. However, the frequent use of these drugs led to the appearance of S. pneumoniae species that 

were also resistant to macrolides.  

The most common mechanisms of macrolide resistance are ribosomal methylation mediated by the erm(B) gene and 

efflux pump synthesis mediated by the mef(A) gene (18). Penicillum-resistant S. pneumoniae strains can be distinguished 

into intermediate-resistant strains and highly resistant strains based on MICs (19). The Clinical and Laboratory Standard 

Institute (CLSI) has defined the MIC breakpoints, for example, the threshold concentrations (micrograms per milliliter) 

to express the sensitivity and resistance of microorganisms to penicillin (20). Values between 0.12 and 1 g/ml indicate 

intermediate resistance. Values greater than 2 g/ml indicate high resistance.  

Penicillin resistance has been on the increase over recent years, with distribution that varies considerably in different 

geographical areas. S. pneumococcus resistance to penicillin can reach approximately 44% in some regions of the United 

States (21,22), 22% in Brazil (23), as much as 70% in some European countries such as Spain, Hungary, and France 

(24,25), and levels as high as 70-78% in Asian countries such as South Korea, Hong Kong, and Taiwan (26,27).   

In cases of respiratory infections caused by penicillin-resistant S. pneumoniae strains, high-dose amoxocillin 

clavulanate of 80-90 mg/kg per day should be administered, thus achieving antibiotic sensitivity rates of 99%. The MIC 

breakpoints used to distinguish macrolide-resistant S. pneumoniae strains are 1 g/ml for azithromycin and 0.5 g/ml for 

erythromycin (28). Erythromycin-resistant strains are particularly high in South America, Europe, South Africa, and Asia, 

and high numbers of azithromycin-resistant strains have been seen in North America and Saudi Arabia. In cases of 

resistance to macrolides, a third-generation cephalosporin is recommended and, as a second choice, one of the most recent 

antibiotics: fluoroquinolones (levofloxacin, moxifloxacin, etc.), ketolides (telithromycin), and oxazilodones (linezolide). 

Resistance to new-generation antibiotics is very low or absent (29). 

H. influenzae is a gram-negative bacterium that can cause a range of infections, including respiratory tract infections, 

meningitis, and septicemia (30). It is especially known for causing serious infections in children before the advent of the 

Haemophilus influenzae serotype b (Hib) vaccine (31). H. influenzae has developed resistance through the production of 

beta-lactamase enzymes that degrade beta-lactam antibiotics, rendering them ineffective (32). Some strains have also 

acquired mutations in penicillin-binding proteins, contributing to beta-lactam resistance (33). Resistance to other 

antibiotics, such as macrolides and tetracyclines, often arises through efflux pumps and ribosomal protection proteins 

(34). Increasing resistance necessitates careful selection of antibiotics and consideration of combination therapies to 

overcome these mechanisms. 

M. pneumoniae is a unique, small bacterium lacking a cell wall, a trait which makes it inherently resistant to beta-

lactam antibiotics (35). It is a common cause of atypical pneumonia, especially in children and young adults, and is also 

associated with other respiratory infections. This bacterium exhibits resistance primarily to macrolides, the preferred 
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treatment option, through mutations in the 23S rRNA of the 50S ribosomal subunit, which reduce drug binding (36). This 

resistance can lead to treatment failures and the need for alternative antibiotics such as tetracyclines or fluoroquinolones. 

The absence of a cell wall and the bacterium's intrinsic resistance to certain antibiotics pose challenges for treatment and 

highlight the need for new therapeutic approaches and monitoring resistance patterns. 

Recent advances to combat pathogen resistance 

Recent advances in genomics have revolutionized our understanding of antimicrobial resistance. High-throughput 

sequencing technologies allow for rapid and detailed analysis of microbial genomes, revealing resistance genes and their 

mechanisms. CRISPR technology is being explored not only for gene editing but also as a tool to combat antibiotic 

resistance (37,38). By targeting and inactivating resistance genes, CRISPR-based strategies offer a promising approach 

to restore the efficacy of existing antibiotics. 

Antibiotic stewardship programs aim to optimize the use of antibiotics to combat resistance. These programs involve 

coordinated efforts to prescribe antibiotics at the right dose and duration (39). New aspects of these programs include 

integrating advanced diagnostic tools and real-time data analytics to guide clinical decisions. For example, rapid 

diagnostic tests can quickly identify pathogens and their resistance profiles, allowing for more targeted therapy and 

reducing the misuse of broad-spectrum antibiotics. 

Bacteriophage therapy, which uses viruses that specifically infect bacteria, is being revisited as a potential alternative 

to antibiotics. Phages can be engineered to target multi-drug-resistant bacteria, and their specificity reduces the risk of 

disrupting the normal microbiota (40). Advances in synthetic biology have enhanced the ability to design phages with 

improved efficacy and safety profiles. Clinical trials and case studies have demonstrated phage therapy's potential in 

treating infections resistant to conventional antibiotics (41). 

The discovery and development of AMPs and other novel compounds offers new avenues for tackling resistant 

pathogens. AMPs are part of the innate immune system and exhibit broad-spectrum activity against bacteria, viruses, and 

fungi (42). Research into synthetic and natural AMPs is progressing, with several candidates showing promise in 

preclinical and clinical studies (43). Additionally, the exploration of novel chemical scaffolds and drug repurposing efforts 

are uncovering new antimicrobial agents that could circumvent existing resistance mechanisms (44). 

The human microbiome plays a critical role in health and disease, including the development and spread of antibiotic 

resistance. New research is focusing on microbiome modulation as a strategy to combat resistance (45). Probiotics, 

prebiotics, and fecal microbiota transplantation (FMT) are being investigated for their potential to restore healthy 

microbial communities and outcompete resistant pathogens. Understanding the interactions between the microbiome and 

pathogenic bacteria can lead to innovative treatments that support the natural defenses of the human body. 

Global surveillance systems and the use of big data are crucial for tracking the emergence and spread of resistance. 

Enhanced surveillance involves not only the monitoring of resistance patterns but also the collection of data on antibiotic 

use and outcomes (46). Integrating big data analytics and machine learning algorithms allows for the identification of 

trends, the prediction of resistance hotspots, and the development of targeted interventions (47). International 

collaborations and data-sharing initiatives are essential for a coordinated global response to antibiotic resistance. 

CONCLUSIONS 

In conclusion, antimicrobial resistance, exemplified by organisms such as S. pneumoniae, H. influenzae, and M. 

pneumoniae, underscores the complex challenges in treating bacterial infections. Each pathogen has developed specific 

mechanisms to evade antimicrobial action, necessitating vigilant monitoring, judicious use of antibiotics, and continuous 

research into novel therapeutic strategies. Addressing pathogen resistance is crucial for ensuring effective treatment and 

controlling the spread of resistant infections. 

The landscape of antimicrobial resistance is continuously evolving, presenting new challenges and opportunities. 

Advances in genomics, innovative therapeutic approaches, and enhanced surveillance efforts are at the forefront of 

combating resistance. By leveraging these new aspects, the scientific and medical communities can develop more 

effective strategies to preserve the efficacy of existing antibiotics and discover new treatments, ultimately improving 

patient outcomes and public health. Addressing antimicrobial resistance requires a multifaceted approach, integrating 

cutting-edge research, clinical practice, and global cooperation. 
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