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ABSTRACT 

Myofascial pain syndrome (MPS) is an extremely widespread and insidious pathology characterized by strong 

musculoskeletal pain that is associated with the presence of myofascial trigger points. Its etiopathogenesis is very complex 

and, among the main symptoms of the disorder, there is pain and the modification of the postural and biomechanical 

settings of the affected patients. Multiple therapeutic approaches have been successfully proposed over time for MPS, at 

a pharmacological, manual, instrumental, and physical level. Among the most interesting instrumental approaches, there 

is neuromodulation (NM), which in most cases is invasively performed through percutaneous modality. Therefore, to 

bypass the invasiveness of percutaneous NM, we performed a study to evaluate the short-term effectiveness of a new 

treatment modality using Focused Transcutaneous Neuromodulation (FTNM) which is designed to be less invasive and 

more tolerable than percutaneous NM, for patients suffering from MPS. 27 patients (average age of 56 ± 15.1 years) were 

selected and underwent a single session of FTNM applied according to the Bio-Physico-Metric approach, consisting in 

the research and treatment of the most dysfunctional myofascial trigger points (MTrPs) in the patient's body through a 

bioimpedance investigation. Patients were assessed with the Numeric Pain Rating Scale (NPRS) and the evaluation of the 

Postural Biometric Index (PBI), calculated by a specific baropodometric device, before (T0) and after (T1) the treatment 

session. At the end of the study, it was possible to observe a significant improvement both in pain (-37.3%) and in the 

degree of postural dysfunction (-25.1%). Therefore, we can state that FTNM applied with Bio-Physico-Metric modality 

is a promising and effective therapeutic approach in controlling the symptoms associated with MPS. 

KEYWORDS: myofascial pain syndrome, chronic pain, trigger point, electrotherapy, transcutaneous electrical 

stimulation, rehabilitation 
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INTRODUCTION 

Myofascial pain syndrome (MPS) is one of the most common and frequent causes of pain, reaching peak prevalence 

levels in the general population of up to 85% (1). In fact, it is estimated that up to 95% of the general population has 

received a diagnosis of MPS at least once in their life in the presence of musculoskeletal pain (1). This syndrome is 

capable of causing a multitude of musculoskeletal problems of various kinds, particularly in terms of neck pain and low 

back pain, but also at the level of the pelvis and limbs. In general, MPS is characterized by the presence of diffuse, local, 

and radiating musculoskeletal pain, associated with the presence of Myofascial Trigger Points (MTrPs) (1,2). According 

to the universally accepted definition given by Simons and Travel, a MTrP can be defined as “a hyperirritable spot in 

skeletal muscle that is associated with a hypersensitive palpable nodule in a taut band. The spot is painful on manual 

compression and can give rise to characteristic referred pain, referred tenderness, motor dysfunction, and autonomic 

phenomena” (3). Although the genesis and chronicity processes of MPS are still unclear and much debated in the 

literature, it is widely probable that the pain perception of affected patients is characterized by phenomena of 

centralization of pain due to localized structural changes due to MTrPs and aberrations in the mechanism of nervous 

input-output at the peripheral nervous level (4). In particular, in the presence of MTrPs causing MPS, it is possible to 

witness a dysregulation of the reflex central nervous control mechanisms with respect to the responses to visceral and 

somatic afferents that characterize the patient with MPS (5). Since these somatic and visceral reflex control mechanisms 

are very responsive to external stimuli of both aberrant and rebalancing types, it is possible to identify MTrPs, intended 

as the maximum structural expression of these somatic alterations, as an ideal therapeutic target in patients affected by 

MPS (6-9). 

It should be emphasized that MTrPs, which are characterized by locoregionality and well-defined referred pain 

patterns, differ from the so-called tender points, which are areas of soft tissue that are not exclusively muscular and are 

characterized by widespread tension and typical of generalized syndromes such as fibromyalgia (10). 

A valid approach to identify and adequately treat MTrPs would appear to be the Bio-Physico-Metric one (11,12). This 

approach is based on the identification of the so-called key MTrPs, i.e. those trigger points that are able to determine the 

appearance of pain and functional limitation both in their anatomical location and in areas distant from them, according 

to a hierarchical development scheme of satellite MTrPs (11,12). The key MTrPs can be identified by impedance 

measurement, palpation, and investigation (using specific questionnaires) and their deactivation can contribute to quickly 

and lastingly rebalancing the patient's musculoskeletal health status (11,12). 

Once the MTrPs responsible for the patient's pathological condition have been identified, especially in the presence 

of MPS, these can be stimulated in different ways to try to bring the muscle tissue back to a state of balance. The 

therapeutic approach to MTrPs can be based on manual therapy, instrumental treatments, and pharmacological approaches 

(4). 

Among the most interesting instrumental approaches for MTrPs and musculoskeletal pain in general is certainly 

neuromodulation (NM). NM is a therapy based on the use of a focused current aimed at inducing neuro-metabolic 

stimulation to the target area that can modulate the information flow at the level of the affected neuronal circuit (13). In 

particular, the application of NM seems to exploit a phenomenon of modulation of synaptic activity at the nervous level, 

producing a controlled release of neurochemical substances capable of inducing a series of therapeutic activities at the 

nervous level (13). This mechanism would seem to lead to evident effects, especially in the control of perceived local and 

radiated pain, through mechanisms connected to the gate control theory (14,15) and the modulation of pain perception at 

the level of the central nervous system (14,16). Although these mechanisms have not yet been fully clarified to date, NM 

in all its forms (percutaneous, transcutaneous, implantological, etc.) appears to be one of the most interesting and effective 

non-pharmacological therapeutic techniques for the modulation of pain, particularly in the presence of MPS, MTrPs, and 

musculoskeletal dysfunctions in general (17-19). 

Therefore, considering the widespread use of NM techniques for musculoskeletal pain control in the rehabilitation 

field, we decided to study the effectiveness of Focused Transcutaneous Neuromodulation (FTNM) applied with a Bio-

Physical-Metric approach on MPS patients. 

MATERIALS AND METHODS 

The present research pilot study was carried out at the Ce.Fi.R.R. Gemelli Molise Point (Termoli, Italy) from January 

to March of 2023. 

The rehabilitation protocol to which the patients were subjected is safe, as all the procedures applied to patients comply 

with the safety regulations in force in the country where the study was carried out; the protocol is accessible to all patients 

who do not highlight specific contraindications to the initial clinical evaluation that is necessary for all patients who access 
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the facility where the study was carried out. The study was conducted in accordance with the ethical principles outlined 

in the Declaration of Helsinki. Written informed consent was obtained at enrolment from participants who were willing 

and able. By virtue of all these considerations and the lack of incontrovertible national legislation regarding the need for 

submission of retrospective and/or non-pharmacological studies to an ethics committee, the normal ethics committee 

clearance was not required (20,21). 

A total of 27 patients (14 women and 13 men, Caucasian ethnicity, average age of 56 ± 15.1 years) suffering from 

MPS and other visceral symptoms were recruited within the Ce.Fi.R.R. Gemelli Molise Point. The presence for at least 6 

months of frequent symptoms of back pain and the presence of knotty and painful muscle areas upon palpation in the 

lower back area allowed physiatrists in charge of the initial clinical evaluation of each patient to diagnose the presence of 

chronic MPS associated to MTrPs. It should be emphasized that although MPS typically presents itself as an acute 

pathology that resolves within a few weeks of the onset of the trauma, in some cases this pathology takes on the 

characteristics of a chronic health problem, with a duration of symptoms that ranges from a minimum of 6 months up to 

several years and a severity of the pathology proportional to its persistence over time (22). 

Furthermore, it should be highlighted that some studies have shown a rather linear correlation between the presence 

of MPS and the onset of chronic low back pain (23,24). This relationship, which would appear to be independent of any 

structural alterations visible at the vertebral level and through MRI, could depend on mechanical and painful-irradiative 

factors due to the MTrPs present in the lower back muscles, with a direct proportional relationship between the number 

of muscles involved and the severity of the pathology (23,24). 

The inclusion criteria included an age between 30 and 80 years and the presence of MPS. The exclusion criteria 

included all the typical contraindications for treatment with electrotherapies (cancer, pregnancy, electronic implants, 

serious vascular and cardiac diseases, epilepsy), as well as severe neurological impairments and clear sensory alterations. 

The patients considered for the study underwent evaluations before (T0) and after (T1) a single treatment session with 

FTNM through: 

- The Numeric Pain Rating Scale (NPRS): NPRS is one of the most common tools for measuring subjectively 

perceived pain by patients. It is a derivate of the Visual-Analogue Scale (VAS) divided into ten levels, usually 

distributed equidistant on a 10 cm long strip, which corresponds to the level of pain perceived by the patient at the 

time of the evaluation, and where 0 is the total absence of pain and 10 is the maximum level of pain imaginable 

and/or ever experienced (25). This scale is reliable, effective, and easy to apply even in the presence of 

dysfunctions of the musculoskeletal system such as MPS (25). In the case of the present study, patients were asked 

to express a value from 0 to 10 corresponding to the maximum level of pain perceived at the level of the lower 

back in the most insidious point for them (then identified as the location of the MTrPs being treated, variable from 

subject to subject among those in the observed sample and responsible for their MPS); 

- Postural Biometric Index (PBI): PBI is an index calculated by Milletrix 3.0 platform software (Diasu Health 

Technologies, Rome, Italy) on the basis of a stabilometric evaluation carried out using the same device (26). This 

index takes into account the parameters of center of pressure, symmetry of bipodalic load, symmetry of retro-

forefoot load, angle of centers of pressure, podalic angle, location of maximum pressure point, symmetry of 

support surface, and center of gravity deviation-center of pressure (26). These parameters are then calculated to 

obtain an index that quantifies the patient's postural state, which can often be altered in the presence of MPS (26). 

The PBI value is considered healthy from 0 to 10 and dysfunctional if >10. 

Patients in the studied population underwent a single treatment session of FTNM applied through a device called 

Monos (AD SWISS MEDTECH SA, Gravesano, Switzerland, granted in use by A CIRCLE S.p.A., San Pietro in Casale, 

Italy). Following the principles of the Bio-Physical-Metric approach, the Monos instrument was first used in skin 

impedance evaluation mode, at a fixed frequency of 60 Hz. Through this mode, it was possible to investigate various 

points of a standard dermatomal map in search of the Key MTrPs within approximately 10 minutes, to stimulate in the 

lower back area, starting from the point that the patient had identified as most painful at the NPRS assessment. After 

identifying the focal points of the treatment, the Monos instrument was used at a frequency oscillating between 15 and 

60 Hz along the dermatomal course of the areas hosting key MTrPs. The therapeutic portion of the Monos treatment took 

approximately 20 minutes for each patient. 

At the end of the study data collection, statistical analysis was carried out using the Wilcoxon Signed Rank test for 

dependent samples, performed through the Statistics Kingdom online calculator (https://www.statskingdom.com, 

Melbourne, Australia). 
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RESULTS 

The analysis of the results of the NPRS values highlighted a significant improvement in the painful symptoms 

experienced by the studied patients (p < 0.01), with an average percentage reduction in pain equal to -37.3% (Fig.1). 

 

 
Fig. 1. Change in NPRS values between T0 and T1. 

 

Similarly, the analysis of the results of the PBI values highlighted a significant improvement in the postural structure 

of the studied patients (p < 0.01), with an average percentage reduction in pain equal to -25.1% (Figure 2). The final 

average value, equal to a score of 10.29, although remaining above the maximum threshold of postural normality, equal 

to 10 according to the PBI system applied, markedly approached the ideal range (from 0 to 10 points). 

 

 
Fig. 2. Change in PBI values between T0 and T1. 

DISCUSSION 

At the end of the study, it was possible to note how MPS patients subjected to a single session of FTNM applied with 

a Bio-Physical-Metric approach obtained a significant improvement in both subjectively perceived musculoskeletal pain 

assessed using the NPRS (-37. %) and the value of the postural-biomechanical setting assessed by PBI (-25.1%). 

MPS is a complex and very frequent disorder of the musculoskeletal system which is characterized by the presence 

of widespread pain and MTrPs (27). The causes are typically multifactorial (27), including functional aspects (reduced or 
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increased muscle use), traumatic, ergonomic (incorrect posture and biomechanics), structural (osteoarthritis, scoliosis, 

etc.) and systemic (hypothyroidism, Vitamin D deficiency and/or or Iron, etc.), as well as psycho-emotional causes (28). 

A key role in the management of the pathology seems to lie in the deactivation of MTrPs through modalities ranging 

from local injection to manual and electrotherapeutic applications (29,30). In particular, the management of these MTrPs 

should focus on both central and peripheral nervous desensitization to the abnormal nociceptive stimuli that are perceived 

by the patient (30). 

One of the most effective and promising therapeutic strategies in the management of musculoskeletal pain from MTrPs 

is that of NM, consisting of electrical stimulation, typically with a percutaneous electro-needle, of a portion of 

musculoskeletal tissue where MTrPs and myofascial pain are present (18,31). Given the therapeutic efficacy highlighted 

by percutaneous NM in multiple studies (18,31,32), it is not surprising that a very similar technique at a conceptual level 

such as FTNM was effective in modulating the pain of the patients studied. Furthermore, in addition to the effectiveness 

of the treatment studied, it should be underlined that its transcutaneous application, without resorting to piercing the 

patient's tissues, guarantees less invasive treatment, resulting in greater compliance on the part of the patients. 

It must also be considered that MPS is a pathology that is widespread throughout the patient's body, often mainly 

affecting the tonic-postural muscles, especially at the level of hips and spine (33). It is no coincidence that the postural 

and biomechanical alterations that affect the back (both in the cervical and lumbar spine), the hips, and the shoulder joint 

are often identified among both the causative and perpetuating factors of MPS (34-36). It is also no coincidence that 

various therapeutic interventions based on exercise, manual therapy, or electrotherapy, have proven useful in improving 

the posture of patients suffering from MPS and myofascial dysfunctions in general, highlighting a proportionality between 

the improvement of posture and that of painful symptoms (37,38). In our case, the intervention using FTNM according 

to the Bio-Physical-Metric approach to the treatment of MTrPs proved useful in improving the posture of the treated 

patients, confirming the trend observed in the literature. 

Although the results obtained are positive and encouraging, it is appropriate to underline some weak points of our 

study. First of all, the sample appears to be relatively small compared to the general diffusion of MPS. Furthermore, it is 

also possible to highlight a certain variability in the age of the patients enrolled. In addition, it must be considered that 

the study was carried out without a control group (either no-treatment or sham) and that the treatment was performed for 

a single session, in the absence of follow-up. 

Despite this, the results obtained were positive and encouraging, considering both the efficacy seen in treatment and 

its broad tolerability by the patients studied. Furthermore, given the transcutaneous and minimally invasive nature of the 

NM treatment applied, no side effects associated with the treatment were detected. 

 

CONCLUSIONS 

 

The treatment of MTrPs according to the Bio-Physico-Metric approach through FTNM is effective in significantly 

improving, in the short term, pain and postural dysfunction in patients suffering from MPS. These results are important 

and encouraging as they allow us to identify a new rapid, relatively economical, and minimally invasive therapeutic 

approach to the treatment of a complex pathology such as MPS. 

By virtue of the positivity of the results obtained, it would be desirable in the future to investigate the effectiveness of 

the therapeutic approach we tested in a more in-depth and extensive manner, through controlled and randomized studies 

on a large sample and for an extended period of time. 
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ABSTRACT 

Multiple sclerosis (MS) is a complex disease involving the nervous system with severe musculoskeletal manifestations 

in terms of postural-biomechanic functionality and stability, paired with a worsening of the visual system. Among the 

most interesting therapies for neuromuscular stimulation of the human body is vibration therapy, in particular in the form 

of Focused Mechano-Acoustic Vibrations (FMAVs), whose therapeutic efficacy, however, is still not fully understood in 

the field of neurodegenerative diseases such as MS. Therefore, in this observational pilot study we evaluated the evolution 

of clinical parameters such as fatigue, measured by the Fatigue Severity Scale (FSS), and postural stability, measured by 

a Stabilometric Analysis (SA), in a sample of 12 MS patients who underwent 3 weekly sessions for 4 weeks of FMAVs. 

At the end of the study, we observed a significant improvement in the FSS value in response to FMAVs treatment, 

although the results in terms of SA were mixed. In conclusion, FMAVs appear to be a promising and safe treatment for 

MS patients, but further and more in-depth studies on the topic are needed to clarify their role in the field of rehabilitation. 

KEYWORDS: Vibrations, neurodegenerative disease, multiple sclerosis, muscle spasticity, physical therapy modalities, 

rehabilitation, gait analysis, fatigue 

INTRODUCTION 

Different experiences over the years have shown that when a mechanical vibration (100-200 Hz) is applied to a relaxed 

muscle, it causes a tonic contraction of the vibrating muscle which can be recorded by EMG and the resulting tonic 

vibration reflex (TVR) is framed as an autogenous reflex and this obviously strongly affects the spinal reflexes (1). Most 

of these effects have been found to arise from vibration-induced activation of spindle Ia afferents (presynaptic inhibition) 

demonstrated by the presynaptic inhibition of the T reflex and the H reflex (2-4). 

These considerations are relevant for people affected by Multiple Sclerosis (MS), who can manifest various 

combinations of disabilities, such as physical dysfunction (motor weakness, spasticity, sensory dysfunction, vision loss, 
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ataxia, etc.), fatigue, pain, incontinence, and cognitive deficits (memory, attention, executive dysfunction). MS has 

various presentation patterns (5), which include: 

- "Relapsing-remitting" MS (80% of all MS cases), presenting with exacerbations and remissions, potentially evolving 

into a "secondary-progressive" form of MS with progressive disability that occurs between acute “attacks” of the 

disease; 

- "Primary-progressive" MS (15% of all MS cases), in which progressive disability can manifest itself from the onset 

onwards; 

- "Progressive-relapsing" MS (5% of all MS cases), in which the disease gradually worsens and then manifests itself 

with discretely severe “attacks”. 

MS can be accompanied by psychosocial, behavioral, and working capacity alterations. These have a 

multidimensional impact on the activity (function) and participation of a person in the activities of daily, social and 

working life, with a significant impact from a social cost point of view (6). 

A consultation of MS rehabilitation studies on balance, weakness, cardiovascular fitness, ataxia, fatigue, bladder 

dysfunction, spasticity, pain, cognitive impairment, depression and pseudobulbar affections concluded that fatigue affects 

approximately two thirds of people with MS (7). 

MS-related fatigue is a complex and subjective symptom characterized by a lack of energy or an overwhelming sense 

of physical and / or mental fatigue. Fatigue is associated with a poorer quality of life (even when controlling the severity 

of the disease) and is one of the main reasons for retirement from work in MS patients (8). 

Fatigue management has been identified as a priority for the quality of life of MS patients. In routine clinical care, 

drug treatments tend to be the first choice, with behavioral interventions and exercises considered as alternative or 

additional treatment options (9). In many cases, patients are never offered these non-pharmacological treatment options, 

and this is concerning as current evidences suggest that drug interventions to date are largely ineffective, while exercise 

and behavioral interventions have greater effects (9). Evidence for the end-of-treatment effects of different types of 

exercise interventions suggests that there is no single optimal exercise modality to strengthen muscle function in MS, but 

rather the choice of the type of exercise may depend on the specific combination of symptoms of MS, by the level of 

disability of the patient and his/her needs and preferences (9). 

The mechanisms by which exercise improves fatigue will therefore differ for different types of personalization of the 

rehabilitation treatment (10). 

Also, the results of the various experiences for balance work are moderate, so this rehabilitation practice should be 

used with some caution and applied according to the differences in the nature of the interventions. Balance exercise 

interventions include hippotherapy, vestibular rehabilitation and eye movement and balance exercises (11-13). However, 

since in this category there are only end-of-treatment effects, it is uncertain if these effects will last over time. 

Furthermore, it must be considered that postural and biomechanical adjustments can be largely influenced by vision, 

and this is even more true in MS patients. 

Looking at the association between eye diseases and MS, it must be highlighted that in the typical MS optic neuritis 

the inflammatory recruitment from the vascular bed to the perivascular space, then to the parenchyma of the central 

nervous system, is the result of chemokine activity. In fact, a key role is played by the chemokine ligand CXCL-10 and 

its receptor CXCR3 (14) on a predisposing genetic substrate (altered mode of immune response), peculiarly in carriers of 

histocompatibility antigens HLA-A3, B7, DRW2. The distribution of genetic factors plays an important role in the 

topographical clustering of phenotypes.  

In MS, the initial plaques of demyelination are generally not particularly extensive, and present only in the white 

matter of the brain or of the medulla and optic nerves, causing a so called retrobulbar optic neuritis (RON). In the advanced 

stages, plurifocal lesions are associated with pyramidal, cerebellar and sensory syndrome. RON takes on particular 

importance as it can constitute the first isolated, acute, generally unilateral and transient manifestation of MS, and precede 

in time - up to 10 to 20 years - other subsequent symptoms, with a probability of 34% in males and 74% % in females 

(15).  

Spontaneous retrobulbar pain or pain caused by movements of the bulb would be related to contractions of the 

oculomotor muscles, which would cause stretching of the optic nerve inflamed meninges, inside the orbital cone or the 

fibrous/osteo-fibrous ring of Zinn (16) and to the fascial wrapping of the medial rectus and superior rectus (17). Moreover, 

temporal pallor with shading of the margin of the optic disc is a late sign of Wallerian-like degeneration. The functional 

deficit translates into centro-cecal scotoma, due to involvement of the papillo-macular bundle, with functional visual 

damage, reduction in amplitude and increase in latency of the VEPs, dyschromatopsia of the red-green axis, which is 

superimposed by the yellow-blue axis in the presence of papillary oedema (18). The conduction delay derives from the 

modification of ionic concentrations along the axons and from the slowing of the axonal flow with a reduction of the 
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chemical mediators of the synapses and exhaustion of the response. This translates into difficulty in systemic motor 

control with fatigue gradually worsening as the systemic damage progresses. 

Usually, in the initial stages, the scotoma regresses spontaneously, although a reduction in contrast sensitivity with a 

general sensation of visual blurring is often evident due to the involvement of the papillo-macular bundle; in subsequent 

phases it may then be associated with pars planitis, with general signs of motor difficulties and fatigue, attention and 

memory disorders, detectable with psychometric tests. Diplopia due to nuclear lesions of the III, IV, VI cranial nerve, and 

nystagmus complete the typical MS Charcot's symptomatic triad (18); also, venous engorgement with whitish sleeves, 

expression of periphlebitis with lymphoplasmacytic infiltration at two-three papillary diameter away from the optic disc, 

can appear, until leading the patient into the territory of low vision. 

Low vision is an irreversible pathological condition characterized by reduced central visual acuity (typical of 

demyelinating pathologies), which is also essential for orientation and independent walking (19), inducing decisive 

consequences on postural behavior (20). The tonic-postural system consists of peripheral receptors (afferent and efferent 

nerve pathways) and peripheral and central nervous system. The impairment of the visual entrance causes an imbalance 

that spreads over the whole muscular chains, in an ascending or descending and also spiral manner. The imbalance, the 

bascules and the rotation are projected to the foot sole and can be recorded with specific 3D digitalized baropodometric 

platforms. 

The evaluation with a visually central impaired patient, as for MS, shows a hypercharge on the side of the dominant 

eye (21), whilst in peripheral defects there is a contralateral overload compared to the dominant one (22). 

Concerning the muscular stimulation aspects of rehabilitation, we know that if a vibratory stimulation is applied to a 

spastic muscle, it influences its tone (1); at the same time when the stimulation is applied to the antagonist muscle, it may 

cause a reciprocal inhibition of the spastic muscles: neurophysiologically, this phenomenon would be linked to 

presynaptic inhibition (23,24). 

For example, in patients with spasticity, the reduction in the soleus muscle activity and H reflex is less pronounced 

during the application of a vibration to the Achilles tendon and this suggests the need to use specific vibration techniques 

and methodologies adapted to the specific case and pathology (25-27). 

In general, to date, the literature tends to be very scarce and uncertain in relation to the effects of vibration therapy for 

neurological pathologies, including MS (28,29). 

The aim of this study is to explore the effectiveness of new technologies, based on the application Focused Mechano-

Acoustic Vibrations (FMAVs), to interact with the posture and muscle function of MS patients and to affect their quality 

of life and disability. 

MATERIALS AND METHODS 

This research is a pilot retrospective analytical observational study carried out at the "San Stef.Ar. Molise" 

Rehabilitation Center of Campobasso, Italy, accredited by the National Health System, in cooperation with the Ce.Fi.R.R. 

(Center for Physiotherapy, Rehabilitation and Re-Education) staff from March to September 2022. 

The study was developed following the Good Clinical Practice (GCP) guidelines. It was conducted within the ethical 

principles outlined in the Declaration of Helsinki, and with the procedures defined by the ISO 9001-2015 standards for 

“Research and experimentation”. Written informed consent was obtained at baseline from all participants. All the 

procedures applied comply with the national safety regulations and the protocol is accessible to anyone who does not 

highlight specific contraindications (pregnancy, epilepsy, electrical implants, infections and tuberculosis) to the 

prescribed treatment. The protocol does not constitute an experimental practice, as applies the same procedures used at 

the study facility for all patients who do not present the listed contraindications. Furthermore, the Ce.Fi.R.R., as the 

institution in charge for carrying out the study through part of its staff, is certified for the realization of "Clinical 

observational studies in the rehabilitation field" (Certificate from the Italian Accreditation Body "Accredia" n. 

IT15/0304), in accordance with the ISO 9001:2015 standards. Due to these considerations, the lack of incontrovertible 

national legislation regarding the need for the submission of retrospective and/or non-pharmacological observational 

studies to an Ethics Committee (30) and the routine nature of the data collection performed (31), a formal Ethics 

Committee clearance was not required. This is intended as a pilot study, to validate or improve the study protocol. 

A total of 12 patients (7 women and 5 men; Caucasian ethnicity; average age of 51 years) were enrolled within the 

study facility.  

All patients had a diagnosis of MS and were able to maintain an upright position for at least 30 seconds. The 

therapeutic protocol was prescribed by a medical doctor after careful evaluation of the general health status of the patient 
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and the possibility and convenience of intervening on his/her MS in a minimally invasive way through a complementary 

rehabilitation approach based on FMAVs. 

To assess the musculoskeletal health status of patients before (T0) and after (T1) the therapeutic protocol, a routine 

evaluation of the patients was carried out using the following diagnostic tools: 

- Fatigue Severity Scale (FSS): it is a 9-items scale evaluating symptoms of chronic fatigue based on the answers 

given by the patient to questions regarding both physical, cognitive and psychosocial fatigue (32). The total score 

is derived from the sum of the points assigned to answers given for each item, with each answer presenting an 

assigned value from 1 (no fatigue perception) to 7 (severe fatigue perception). The maximum total score is 

therefore 63 points, indicating a situation of extreme fatigue for the patient (32). It is considered a reliable tool to 

assess general fatigue in the presence of MS (32); 

- Stabilometric Analysis (SA): it consists in recording the parameters of Ellipse Area (mm2), Antero-Posterior 

Oscillations (mm) and Lateral-Lateral Oscillations (mm) through a platform equipped with sensors on which the 

patient stands to register his stability (33). The device used for the observed patients was Argoplus (Fremslife 

S.r.l., Genova, Italy); the measuring device is composed of a large support surface, placed on the ground through 

four vertical load measurement sensors placed under the edges of the support surface. The instantaneous load 

signals are sampled at 100 Hz and combined in order to calculate the position of the COP (Center of Pressure) 

with a precision better than 0.1 mm in the entire supported weight range (10-200 Kg). The support surface, in 

honeycomb panel, has a natural resonance frequency under alternating load of over 200 Hz to ensure that all the 

components of the Sway are effectively transferred to the load sensors and therefore to the processing of all the 

harmonics of the COP oscillation in the frequency band up to 10 Hz. This assessment has proven useful in assessing 

the body-stabilization abilities of MS patients (33). 

The observed patients underwent a protocol consisting in the application of FMAVs 3 times a week for 4 weeks, for 

a total of 12 sessions lasting approximately 25 minutes each. The treatments were performed on an outpatient basis in the 

study venue. FMAVs therapy was administered through the Vibration Sound System (ViSS) (Vissman Europe S.r.l., 

Rome, Italy), using vibrating plastic cups connected to the air generator of the device. The transducers were symmetrically 

positioned on multiple body areas of the trunk and lower limbs in which typically palpable Myofascial Trigger Points 

(MTrPs) might be located, in particular at the level of upper trapezius, dorsal paraspinal muscles, lumbar paraspinal 

muscle, rectus femoris, vastus medialis, vastus lateralis, hamstrings, gastrocnemius and tibialis anterior. During each 

session, the stimulation frequency was set at 120 Hz for the first 15 minutes followed by a frequency of 180 Hz applied 

for the remaining 10 minutes. The FMAVs treatments were administered to the patients through a device called Vibration 

Sound System One (Vissman S.r.l., Rome, Italy). 

Given the relatively small size and demographic variability of the observed group of patients, the data collected at 

time T0 and T1 were processed through the application of a non-parametric Wilcoxon signed-rank test. Data analysis was 

performed through the Statistics Kingdom open online calculator software (https://www.statskingdom.com, Melbourne, 

Australia). The observed changes were considered significant for p values < 0.05. 

RESULTS 

At the end of the therapeutic protocol, mixed changes were observed both for FSS and SA values. 

In particular, the FSS variable showed a significant reduction (p = 0.04) between T0 and T1, equal to an average 

percentage variation of -14%, going from a mean value of 49.4 ± 10.4 to 42.5 ± 11.3 (Fig.1). 
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Fig. 1. Box plots of MFIS values at times T0 and T1. 

 

Nevertheless, mixed results were observed in relation to the SA parameters. In fact, mainly non-significant variations 

of the considered values were observed, with the exception of a slight significant increase in Closed-Eyes Ellipse Area at 

Closed Eyes (+31.2%, p = 0.04) and Closed-Eyes Lateral-Lateral Oscillations (+16.9%, p = 0.02), as highlighted in Table 

I. 

 

Table. I. Stabilometric Analysis variations between times T0 and T1. 

 

Ellipse Area (mm2) 

Antero-Posterior Oscillations 

(mm) 

Lateral-Lateral Oscillations 

(mm) 

Open-Eyes Closed-Eyes Open-Eyes Closed-Eyes Open-Eyes Closed-Eyes 

Mean 616.6 543.2 1070.1 1404.3 36.1 35.9 

S.D. 644.4 373.5 948.3 1155.4 13.7 14.8 

p n.s. 0.04 n.s. n.s. n.s. 0.02 

Δ% -11.9 +31.2 -0.6 +11.1 +3.5 +16.9 

 

DISCUSSION 

To date, the literature regarding vibrations as a therapeutic approach in MS patients is scarce. Our study pointed out 

a positive correlation between FMAVs application and improvement of perceived fatigue, measured with FSS, in MS 

patients. However, mixed results were observed in the relationship between FMAVs application and postural stability 

measured with SA in the same MS patients. 

It is known that vibrations, administered with different modalities and physical parameters, are able to produce a 

multitude of mechanical and endocrine-metabolic effects at the musculoskeletal level (34). In particular, in the context of 

localized FMAVs vibrations, it would seem that frequencies between 100 Hz and 200 Hz, such as those applied in our 

study, are endowed with myorelaxing properties compared to the hyper-tonifying proper-ties of FMAVs vibrations in the 

order of 300 Hz (34); this difference might be attributable to the different stimulation frequency threshold of 

mechanoreceptors  that are  found  in  various  kind  of  tissue, in particular those of the skin such as Meissner and Pacinian 

corpuscles (34), as well as to the different changes in muscle morphology induced by different stimulation frequencies 

(34). However, the influence of these pathways on the perception of fatigue by subjects undergoing vibration therapy 

remains unclear. Typically, the application of localized vibrations or Whole-Body Vibrations (WBVs) is associated with 

an increase in fatigue in the human muscular system, which however tends to manifest it-self more intensely at low 

frequencies, in the order of 10-50 Hz (35,36), probably by virtue of a greater synchronization of the low frequencies with 
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respect to the activation threshold of the Tonic Vibration Reflex (26).On the contrary, localized vibrations at higher 

frequencies, starting from approximately 100 Hz and above, would seem to be associated with an improvement in the 

perception of fatigue (36,37), probably by virtue of mechanisms linked to peripheral proprioception (38) and central 

perception of fatigue (39), mechanisms which however require further clarification. Furthermore, it is also hypothesized 

that localized vibrations at higher frequencies are able to improve the efficiency of joint control in stimulated subjects 

(40). It should be considered that other studies in the past have already highlighted how the application of localized 

vibrations, even of the FMAVs type, at frequencies from 120 Hz to 300 Hz would seem to be able to reduce muscle 

soreness (41) and perceived fatigue at a central level (42) in the human body. In light of what has been expressed so far, 

it is possible that the 120 Hz and 180 Hz FMAVs to which the observed MS patients were subjected actually contributed 

to the significant 14% reduction in the FSS score detected by the analysis of the available data. 

The same factors considered in relation to the observed improvement in fatigue could have also influenced the mixed 

results obtained regarding the stability of patients subjected to SA. In particular, we observed how MS patients treated 

with the FMAVs protocol in general did not undergo particularly significant variations in postural stability in terms of 

oscillations and area of the ellipse in relation to the Center of Pressure. In fact, a slight increase in the reference values of 

SA was observed. The literature would seem to suggest that muscles respond to vibratory stimulation with plastic 

adaptations, which are expressed in a maximum potentiation obtained at frequencies around 300 Hz when such stimuli 

are applied in the form of FMAVs (43).Since the patients we observed were treated with FMAVs at frequencies between 

120 Hz and 180 Hz, which are known to be associated with myorelaxant effects (23), it is possible that the stimulation 

frequency did not significantly influence the postural stability of MS patients. As the patients we observed were treated 

with FMAVs at frequencies between 120 Hz and 180 Hz, notoriously associated with myorelaxant effects (34), it is 

possible that the stimulation frequency did not significantly influence the postural stability of MS patients, since the 

applied frequencies denote a markedly more analgesic and hypotonifying activity compared to higher frequencies capable 

of directly strengthening the treated muscles and therefore increasing the postural stability of the treated subjects. 

Furthermore, since the observed patients were treated with 25 minutes of continuous application of FMAVs, it cannot be 

excluded that the relatively prolonged exposure time produced a rebound phenomenon of the activation of Tonic Vibration 

Reflex mechanisms, which apparently undergo reduction of EMG activity, motor unit firing rates, and contraction force 

when the involved receptors are overstimulated and irritated for a long time (44). In any case, the postural effects of the 

treatment seem to be amplified when the visual sensory input is removed in the patient by closing his eyes, confirming 

that eyes play an important role in the postural control (22) even in the case of MS patients and can in turn influence and 

be influenced by the peripheral muscle stimulation of a FMAVs-type treatment, raising questions about this physiological 

interrelationship that would merit future investigation. 

Although the observed results are encouraging and interesting, some limitations of this study must necessarily be 

taken into account. Among the limitations of the study, it is necessary to consider the small sample size. Furthermore, the 

selected sample referred only to MS patients who could maintain an upright position. In fact, a choice of allocation could 

exaggerate the estimate of the treatment effect, on average. Furthermore, the absence of a control group and a follow up, 

due to the observational design, would constitute an ulterior limitation with respect to the reliability of the observed 

variations. Nonetheless, among the many tools that could be used in MS symptoms assessment, the scales and systems 

here applied are widely adopted in several studies, allowing for comparison of results across different cohorts. 

About the safety of the protocol, potentially, the use of vibration cups could expose patients to an increased risk of 

muscle reaction (contractures and/or instability), but in our study and in our routine clinical experience this never 

happened, suggesting a high level of safety and minimal invasiveness of FMAVs, which was generally detected in many 

reviews and complex clinical contexts (45-47). A medium-term follow-up could be useful to verify the effectiveness of 

the vibratory treatment over time, as well as to establish how often to program any recall cycles. 

One of the key strengths that must be considered is the uniqueness of the study which, to the best of our knowledge, 

reported for the effect of FMAVs in MS, both from the point of view of fatigue and posture. 

CONCLUSIONS 

In conclusion, the vibratory stimulation was well tolerated by MS patients, proved to be safe and effective, easy to 

use, without risk for the patient and particularly effective for reducing MS-related fatigue, which is a fundamental point 

to increase the autonomy of the patient and may result in a notable reduction in the support of caregivers and consequently 

a saving in social expenses for health. 

FMAVs can influence the musculoskeletal system of the patient affected by MS, inducing changes in postural attitude 

and related adaptation capacities in terms of stability and relationship with visual inputs. However, the effects on the 
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postural system determined by different vibration frequencies and times of exposure to the treatment require further study 

to better clarify the specific application parameters for each pathological condition. 

Although there is positive evidence for the effects of FMAVs in MS patients, our experience suggests the need for 

further randomized studies on larger samples to determine the best frequency and the best amplitude and duration of 

exposure to FMAVs in order to better improve function in patients with neuromuscular alterations in MS. 
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INTRODUCTION 

The name somatomedin (SM) is composed of somato, meaning “factor with a target inside the body”, and medina, 

the intermediary of the somatotropic hormone.  SM is a molecule present in the serum and an intermediary of somatotropin 

which acts on tissues and first appeared in the scientific literature in 1972 (1). Growth hormone (GH) does not directly 

affect tissues; instead, it acts through SM, which is synthesized in the liver and released into the bloodstream (2). Since 

these factors, in addition to causing tissue growth, are mitogenic, they have been called insulin-like growth factors (IGFs) 

(3).  

Somatomedin (SM) is a molecule present in the serum that acts in cooperation with growth hormone (GH). 

SM, also called insulin-like growth factor (IGF) (4), is synthesized by the liver, circulates in the bloodstream, and acts on 

tissues as a mitogen. In the serum, there are two SMs that act as transporters that bind to its receptor on the target 

cell, producing an effect on somatostatins. SM is composed of IGFs-1 and 2, SM-A, and multiplication-stimulating factor 

(MSF), which mediate the GH on skeletal tissues. Experiments have shown that in hyposectomized rats, GH alone does 

not act as a mitogen. Instead, it becomes active in combination with SM. IGFs-1 and 2 have a chemical formula similar 

to insulin and biological effects on the growth of children. SM is a mediator of GH and promotes cell differentiation and 

multiplication in both muscle and cartilage. 

DISCUSSION 

SM is a small GH-dependent peptide that is composed of insulin-like growth factors (IGFs)-1 and 2, SMs-A and C, 

and multiplication-stimulating factor (MSF), that mediates the GH on skeletal tissues (5). Two SMs are present in the 

serum, and they have a high molecular weight (150 and 60 Kd) (6). The complex of these two transporter proteins, and 

their effect on the biological activity of somatostatins, creates a complicated physiological control that includes the 

delivery of SM to its receptor which is located on the target cell.  

In experiments, it was seen that cartilage mucopolysaccharides can be stimulated with the addition of serum in 

hyposectomized rats that were pretreated with GH (7). Treatment with GH alone does not cause tissue stimulation (8); 

Rather, the stimulating factor results from SMs-A and C (9). IGF-1 and IGF-2 have a formula which is similar to insulin 

and they are composed of A domains homologous to the A chain of insulin, B domains homologous to the B chain, C 
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domains homologous to the C chain of proinsulin and D domains extending from the C terminals of A Chains (10). SM-

C is identified as IGF-1 because they have the same amino acid chain.  

SM is associated with protein macromolecules and can be extracted from human plasma where it circulates. Its 

molecular structure is similar to that of insulin and SM plays a key role in the growth of children (11). SM is a mediator 

of GH and promotes cell differentiation and multiplication in both muscle and cartilage (12). Therefore, SM plays a role 

in the activity of chondrocytes by promoting the synthesis of cartilage and osteoblasts (13). In GH-deficient individuals 

such as children, plasma concentrations of SM are low. SM secretion is inhibited by cortisol, and this could explain its 

negative effects on body structure (14). SM is produced by various tissues and organs, including the liver, under the 

stimulus of GH or the somatotropic hormone produced by the pituitary gland (15). Even after childhood, SM continues 

to affect the tissues into adulthood (16). IGF-1 levels in the blood begin to increase in childhood, until reaching a 

maximum peak level around 40 years of age and then gradually decreasing after that age (17). SM has anabolic activity 

and is a cellular growth factor, although the dynamic effects on cells have not yet been clarified. 

IGF-1 is a powerful hormone produced by liver cells and chondrocytes that regulates cartilage synthesis. After 

generation, IGF-1 is released into the circulation, where it binds to the transport proteins IGF-binding proteins (IGF-BP), 

which increases its plasma half-life (18). IGF-1 (also known as SM) is a hormone that is molecularly similar to insulin 

and plays a very important role in the growth processes of children, maintaining its effects even into adulthood (19). GH 

has been found in human brain tissue and IGF-2 has also been detected in cerebrospinal fluid (CSF). The mammalian 

brain expresses the SM receptors IGF-1R and IGF-2R (20). GH is generated in human brain tissue and carries out its 

biological action in collaboration with IGF-1. These hormones mentioned above are very important for brain function 

and development and increase the ratio between neurons and glia (21). For children with impaired brain development, 

treatments with human GH (hGH) improve growth recovery and intelligence quotient (22). Therefore, GHs and SMs are 

very important in the development, maturation, and function of the brain in childhood.  

The genetic deficiency of SM results in functional brain damage with reduced capacity of its receptors and can cause 

growth delays (23). Inflammatory processes influence the hypothalamic-GH-IGF-1 axis, causing resistance to GH and a 

decrease in IGF-1 (24). The binding of IGF to its receptor activates a biochemical cascade that includes 

phosphatidylinositol 3-kinase (PI3K), mTOR and MAPK involved in cell growth and differentiation, producing biological 

effects which are also shared by insulin signaling pathways (25) 

Both IGF-1 and IGF-2 act on the IGF-1R which is ubiquitous in all tissues (26). It has been reported that the chemical 

structure of IGF-1R is similar to that of the insulin receptor (27). The extracellular region of IGF-1R is composed of alpha 

and beta subunits which act as a ligand and the intracellular part of the receptor consists of the tyrosine kinase domain 

with the beta subunit. After the IGF-1R receptor binds the binding protein, it undergoes structural rearrangement. IGF-1 

binding to IGF-1R occurs at two separate sites: one with high affinity and one with low affinity (28). Transgenic mice 

lacking the IGF-2 gene show dysfunction in embryonic growth and have approximately 70% less body weight at birth 

(29). This demonstrates the importance of IGF in pre- and post-natal body development. 

CONCLUSIONS 

SM is important for the growth of tissues, as well as brain function and development in children. GHs and SMs 

are very important in the development, maturation, and function of the brain in childhood. Treatments with hGH improve 

cerebral growth and cognition, and genetic deficiency of SM causes functional brain damage with reduced receptor 

capacity and possible delays in growth. Further studies are needed to clarify the real effects of SM on the brain. In addition, 

research is currently targeting IGF-1 and IGF-2 since these two molecules are also involved in other diseases. 
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ABSTRACT 

T cells play a crucial role in the immune response by producing soluble mediators, including cytokines. Mature and 

activated T cells are effector cells and present different phenotypes. T cells have a certain plasticity that allows them to 

adapt to different antigens. They are distinguished by their different differentiation and production of molecules and 

intervene both in modulating the immune system and in brain inflammation. T cells are divided into various subsets 

including T helper cells (Th), cytotoxic T cells (Tc), and regulatory T cells (Treg). Their activation leads to the production 

of specific transcription factors that regulate the expression of specific genes. CD4+ T cells are helper cells that aid in the 

production of antibodies, while CD8+ Tc cells are killer cells that act against infected or abnormal cells and mediate 

neuroinflammation. CD8+ cells mediate neurodegeneration in neuroinflammatory diseases such as Alzheimer's disease 

(AD) and Parkinson's disease (PD). Treg cells are immune regulators and regulate inflammation. Dysregulation of T cells 

mediates many neurological disorders such as depression and schizophrenia. The in-depth study of T cells and their 

subsets helps to better understand their mechanism of action and their function in neurological diseases. 

KEYWORDS: T cell, subset, neuroinflammation, neurodegeneration, immune response  

INTRODUCTION 

T cells play a crucial role in the immune response and act by producing soluble mediators and by cell-to-cell contact 

(1). Many T cell subsets have been characterized, and terminally differentiated subtypes are considered effector cells. 

Data suggests that the phenotype of all existing T cells has not yet been defined (2). T cells can have mixed phenotypes 

that interconvert from one subset phenotype to another that, through specific signals, can produce molecules with memory. 

T cells have a certain plasticity to adapt to the immune response and various microenvironments (3). They are particularly 

important for the defense against pathogens that invade tissues (4). T cell subsets are distinguished by their differentiation 

and identified by the expressed cell surface markers but can also be classified by the molecules that they produce (5). It 

is important to understand the markers of T cell subsets, transcriptional regulators, effector molecules, and the function 

of the subsets in the immune response (6). Understanding these T cell subsets and their regulation can be an important 

tool in the therapy against immune diseases. T cells and their subsets play an important role in both immune system 

modulation, neuroinflammation, and neurodegeneration in the brain (7) (Table I).  
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Table I. Some T-cell subset receptors (surface phenotype). 

Cell type  Receptors 

Naive IL-7R, CD3, TCR, CD62L, CCR7 

Cytotoxic CD3, TCR, CD8 

Exhausted CD3, CD8, PD1, TIM3, 1B11, LAG3 

Anergic CD3, TRC, BTLA 

Helper Cytokine receptor, CD3, TCR, CD4, Chemokine receptor 

Regulatory GITR, CD3, TCR, IL7R, CCR7 

Memory CD44, CD3, TCR, IL7R, CCR7 

NKT NK1.1, SLAMF1, TCR, SLAMF6, TGFR 

 T cell CD3,  TCR 

CD8 CD3, TCR, CD8, B220 

 

T cell subsets are part of the adaptive immune system and are classified based on their function and surface markers. 

Transcription factors are critical in determining T-cell subset differentiation and function (8). T cells are categorized into 

various subtypes, including T helper cells (Th), cytotoxic T cells (Tc), and regulatory T cells (Treg), amongst others (9). 

Each subtype's differentiation is driven by specific transcription factors that regulate the expression of lineage-specific 

genes (Table II). 

 

Table II. T helper (Th) cell transcription factors. 

Th1 T-bet, STAT4, STAT1 

Th2 GATA3, STAT6, DEC2, MAF 

Th9 PU.1 

Th17 RORt, STAT3, ROR 

Th22 AHR 

TFH BCL-6, STAT3 

DISCUSSION 

CD4+ cells have various subtypes such as Th1, Th2, Th17, and Treg (10). These cells act through the release of 

cytokines and are classified based on their function and surface markers.  

CD8+ Tc cells are killer cells and act against infected or damaged cells, causing inflammation (11). These cells also 

act against abnormal neurons, causing neuroinflammation (12). CD8+ T cells can act against myelin and neuronal 

antigens, causing damage at the axonal level (13).  

Tregs are immune T cells that regulate homeostasis and the immune response when it is too high. Tregs may also help 

maintain brain health and regulate inflammation (14). Treg cells suppress excessive inflammation and, when reduced, 

contribute to the progression of brain disease. T cells are found in the brain and cerebrospinal fluid in limited numbers 

due to the blood-brain barrier (BBB) limiting their entry (15). T cell subsets play a dual role in neuroprotection and 

neuroinflammation. Neuroinflammation is a pathological effect that occurs in many brain diseases including Alzheimer's 

disease (AD), multiple sclerosis (MS), and Parkinson's disease (PD) (16). Activated innate Th1 cells in the brain produce 

interferon-gamma (IFN-γ), which causes inflammation and neuronal damage, while Th17 cells produce IL-17, a cytokine 

that participates in the breakdown of the BBB, allowing inflammatory cells to enter the brain (17). 

In neurodegenerative diseases such as AD and PD, T cells are found to be infiltrated in brain regions with amyloid 

plaques (AD) or Lewy bodies (PD) (18). In these diseases, inflammatory cytokines play a fundamental role in 

neurodegeneration. In addition, dysregulation of T cells and their subsets mediates many psychiatric disorders such as 

depression and schizophrenia by activating inflammation (15). In fact, T cells enter the brain after BBB breakdown caused 
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by systemic inflammation. Cytokines released into brain tissue alter the physiology of neurons and microglia (19). These 

effects provide the basis for promising therapeutic advancement that may involve enhancing Treg cells or inhibiting pro-

inflammatory cytokines such as IL-1, TNF, IL-6, and IL-17 (20). 

Naive T cells are crucial elements of our immune system and participate in the pathophysiology of the brain (21). 

Naive T cells are T lymphocytes that have not yet encountered their specific antigen which are called “virgin cells” and 

are ready to be activated by a specific antigen presented by antigen-presenting cells (APCs). These cells originate in the 

bone marrow, mature in the thymus, and then circulate in the blood and lymph nodes, waiting to be activated (22). Once 

activated, they differentiate into effector T cells or memory T cells. Naive T cells can affect the brain directly or indirectly 

through several mechanisms. Naive T cells do not normally cross the BBB, but in the case of neurodegenerative disease 

where the BBB is dysregulated, T cells can enter the brain (23). 

“T cell exhaustion in the brain” refers to the phenomenon in which T cells lose their functional capacity after prolonged 

activation in response to chronic infections, tumors, or autoimmune conditions (24). Prolonged immune activation leads 

to T cell exhaustion, a reaction which may be particularly important in the context of neuroinflammatory or 

neurodegenerative diseases (25). Exhausted T cells have reduced cytokine production, proliferation, and cytotoxicity, 

impairing their ability to fight infections or tumors. 

Anergic T cells in the brain play a role in the immune system's regulation to maintain balance and prevent excessive 

inflammation or autoimmunity (26). T cell anergy is a state of functional unresponsiveness in T cells, where they are alive 

but fail to proliferate or produce cytokines upon stimulation (27). This occurs when T cells receive signal 1 (antigen 

recognition via the T-cell receptor) without signal 2 (costimulatory signals, e.g., CD28 interaction with B7 molecules on 

APCs). T cells infiltrating the brain in certain conditions such as neuroinflammation, infection, or autoimmunity, may 

encounter signals capable of producing immunological tolerance that leads to anergy (28). 

Memory T cells are a subset of T lymphocytes that are primarily associated with the immune system (21). There is 

growing interest in how they might interact with or influence the brain. Memory T cells can cross the BBB under certain 

conditions, such as during neuroinflammation (29). In diseases such as MS, memory T cells target myelin, leading to 

neurodegeneration. 

Natural Killer T (NKT) cells are a subset of immune cells that bridge the innate and adaptive immune systems (30). 

They are known for their role in recognizing lipid antigens presented by the CD1d molecule and producing large amounts 

of cytokines (31). Their relationship to the brain and neurological functions is a growing area of research. NKT cells are 

primarily studied in the context of the immune system but they are also involved in neuroinflammation and brain 

homeostasis. NKT cells are known to secrete cytokines such as IFN-γ and IL-4, which influence inflammation (32). 

Gamma delta (γδ) T cells are a unique subset of T cells that play a role in immune surveillance and tissue homeostasis, 

including in the brain (33). Unlike the more common alpha-beta (αβ) T cells, γδ T cells have a distinct T cell receptor 

(TCR) composed of γ and δ chains. These cells are involved in both innate and adaptive immunity and are notable for 

their ability to respond to non-peptide antigens without the need for antigen presentation by major histocompatibility 

complex (MHC) molecules (34). γδ T cells are implicated in neuroinflammatory conditions, such as MS and other 

autoimmune diseases, and are thought to contribute to the breakdown of the BBB and the recruitment of other 

inflammatory cells into the central nervous system (CNS) (35). 

CD8αα T cells express a homodimer of the CD8α chain, unlike conventional CD8αβ T cells, which express a 

heterodimer of CD8α and CD8β (36). CD8αα T cells often express TCRs with limited diversity, such as γδ TCRs or 

invariant αβ TCRs, which are associated with innate-like immune responses. These cells are involved in immune 

regulation, tissue repair, and maintaining homeostasis, and they are generally less cytotoxic than CD8αβ T cells (37). 

CONCLUSIONS 

Today we know that T cells can infiltrate the CNS in both physiological and pathological conditions and their presence 

is tightly regulated by the BBB. Th1 cells release IFN-γ, which activates microglia and astrocytes, exacerbating 

neuroinflammation, while TH17 cells produce IL-17, which disrupts the BBB, allowing further immune infiltration. T 

cell subtypes have been implicated in MS, AD, and PD. CD8+ cells can directly target neurons, contributing to 

neurodegeneration, while Treg cells suppress excessive inflammation. It is interesting to understand which T cell subtypes 

mediate the pathophysiological state of the brain and their functions.  

 Modulating T cell responses using immune inhibitors, Treg-based therapies, or cytokine blockade could offer 

potential treatment strategies for neurodegenerative diseases. 
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ABSTRACT 

Tyrosine kinase receptors (TKRs) are a subclass of cell surface proteins with phosphorylating enzymatic activity, 

selective for tyrosine residues. At the level of brain neurons, these receptors play an important role in axonal growth, 

synapse formation, neuroprotection and plasticity. The TKR family includes receptors TkrA, TkrB, and TkrC, that can 

bind several specific ligands such as the neurotrophin-3 (NT-3). TKRs also include epidermal growth factor receptors 

(EGFR), fibroblast growth factor receptors (FGFR), and insulin-like growth factor receptors (IGFR). In healthy neurons, 

TKRs play physiological roles such as survival and differentiation. Ligand-induced TKR activation participates in axonal 

guidance and branching. NT-3 is an important protein in the nervous system, is involved in neuronal pathophysiology, 

and during early brain development, NT-3 influences synapse formation and stabilization. Epidermal Growth Factor 

(EGF) is a protein ligand that stimulates cell growth, proliferation, and differentiation by binding to its receptor EGFR. 

EGFR is a member of the TKR family of receptors and when it is activated it dimerizes its receptor and its tyrosine kinase 

domain becomes active, leading to autophosphorylation. Microglia express TKRs as colony-stimulating factor 1 receptor 

(CSF1R), which is important for microglial survival and activation. This reaction can trigger inflammation that contributes 

to neurodegenerative diseases. Inflammation may be due to dysregulation of TKRs in astrocytes and blood-brain barrier 

(BBB) disruption. TKRs play an important role in brain inflammation and targeting these molecules could provide 

therapeutic effects. 

KEYWORDS: Tyrosine, kinase, receptor, CNS, neuron  

INTRODUCTION 

Tyrosine kinase receptors (TKR) are a subclass of cell surface receptors that are necessary for phosphorylating 

enzymatic activity and are selective for tyrosine residues (1). They play a key role in neuronal signaling, development, 

and plasticity, and have intrinsic tyrosine kinase activity, which is essential for their function in signal transduction (2). 

At the neuronal level, these receptors are involved in processes such as axonal growth, synapse formation, and 

neuroprotection (3). TKRs have a transmembrane protein structure consisting of an extracellular domain that binds 

specific ligands such as growth factors. The transmembrane domain attaches the receptor to the neuronal membrane; 

while the intracellular domain contains the tyrosine kinase domain that auto-phosphorylates upon activation. In neurons, 

TKRs include TkrA, TkrB, and TkrC receptors that bind neurotrophin-3 (NT-3), nerve growth factor (NGF), and brain-
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derived neurotrophic factor (BDNF) (4). In addition, TKRs also include epidermal growth factor receptors (EGFR), 

fibroblast growth factor receptors (FGFR), and insulin-like growth factor receptors (IGFR) (5). 

DISCUSSION 

TKRs play a physiological role in healthy neurons by mediating some important processes related to neurotrophic 

signaling (6). TkrA promotes the survival and differentiation of sympathetic and sensory neurons by binding to NGF, 

while TrkB supports synaptic plasticity and survival via BDNF, and TkrC aids development via NT-3 (7). Moreover, 

ligand-induced TKR activation participates in axonal guidance and branching. 

TKRs support oligodendrocyte precursor cells, which are responsible for producing myelin (8). Ligand-induced TKR 

activation participates in axonal guidance and branching. TkrB plays a key role in synaptic plasticity, long-term 

potentializing and memory formation (9). TKRs are involved in neuroprotection, and during stress, they improve neuronal 

survival (10).  

NT-3 is an important protein in the nervous system which is involved in neuronal physiopathology (11). It is part of 

the neurotrophin family, which includes NGF, BDNF, and neurotrophin-4/5 (NT4/5) (12). These molecules participate in 

neuronal survival, differentiation, and maintenance (13). During early brain development, NT-3 influences the formation 

and stabilization of synapses, ensuring that neuronal circuits are properly connected (14). NT-3 is involved in learning 

and memory maintenance, modulates the growth of dendrites and axons, promotes the myelination of neurons, and 

improves signal transmission in the central nervous system (CNS) (15).  

TKRs are membrane proteins involved in cell survival, proliferation, differentiation, metabolism, and migration (16). 

They play an important role in brain function, including immunology, bridging neurobiology and neuroimmunology (17). 

They are high-affinity cell surface receptors and can bind various growth factors, hormones, and cytokines (18). After 

TKRs bind to their ligand, they undergo dimerization and autophosphorylation on specific tyrosine residues, which 

activates downstream signaling cascades (19). TKRs are crucial for neuronal development, survival, and synaptic 

plasticity. The main TKRs in the brain are neurotrophins NGF, BDNF, and NT-3. These are crucial for neuronal 

physiology and cellular homeostasis. EGFR is involved in the proliferation and repair of glial cells, while the vascular 

endothelial growth factor receptor (VEGFR) is important in the formation of new vessels (angiogenesis) of the cerebral 

system and also in neurovascular processes (20). EGF is a protein that stimulates cell growth, proliferation and 

differentiation by binding to its receptor, the EGFR, a member of the TKRs receptor family. By binding to its receptor 

EGFR, EGF dimerizes it and its tyrosine kinase domain becomes active, leading to autophosphorylation. This reaction 

triggers the cascade of the MAPK/ERK and PI3K/AKT biochemical pathways, promoting cell survival and proliferation 

(21).  

The platelet-derived growth factor receptor (PDGFR) regulates the development of oligodendrocytes and astrocytes, 

which are important for myelination and neuroinflammation, while FGFR is implicated in neurogenesis and repair 

mechanisms following injury (22). Microglia are immune cells with macrophagic activity that express TKRs such as 

colony-stimulating factor 1 receptor (CSF1R), which is crucial for microglia survival and activation (23). This activation 

triggers inflammation, contributing to neurodegenerative diseases such as Alzheimer's and Parkinson's. In the brain, 

EGFR and FGFR are expressed by astrocytes and modulate the response to injury and inflammation (24). Dysregulation 

of TKRs in astrocytes can disrupt the BBB and cause inflammation (16). 

CONCLUSIONS 

In conclusion, TKRs are involved in both physiological and pathological mechanisms of the CNS, depending on the 

specific receptors and ligands. TKRs are proteins that also play an important role in neuroinflammation. This suggests 

that targeting TKRs as therapeutic factors could be useful for treating neurodegenerative and neuroinflammatory diseases. 
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ABSTRACT 

Hyperkalemia is an increase in blood potassium (K+) that can affect multiple organs, including the functioning of the 

brain. K+ remains stable between meals due to K+ release primarily from muscle and liver cells, while it decreases with 

renal excretion and sequestration from muscle cells. K+ resides almost entirely within cells and is absorbed in the small 

intestine. Increases in this electrolyte can occur with impaired renal excretion or cellular dysfunction. Hyperkalemia is 

regulated by the kidneys, which dispose of excess K+. Physiological central nervous system (CNS) K+ levels are involved 

in nerve signaling and hyperkalemia can dysregulate normal brain processes and it may also play a role in 

neuroinflammation. Increased K+ can cause muscle weakness, fatigue, and, in severe cases, even cognitive dysfunction 

with confusion, disorientation, and coma. An abnormality in K+ levels can be reflected in the membrane potential of 

neurons and affects their polarization and excitability. Mild hyperkalemia can cause increased neuronal excitability, 

muscle spasms, paresthesias, and neuronal and muscular paralysis with respiratory failure and/or cardiac arrhythmias. 

KEYWORDS: Hyperkalemia, potassium, brain, neuron, membrane potential  

 

INTRODUCTION 

Hyperkalemia is a pathology that varies from mild to severe and very often also involves neuronal dysfunction.  

Hyperkalemia is a common electrolyte abnormality with high levels of potassium (K+) in the blood (1). It can significantly 

impact brain function and may cause neuroinflammation (2). Hyperkalemia can result in life-threatening arrhythmias and 

is associated with an increased risk of mortality (3). The development of hyperkalemia is often exacerbated by 

concomitant comorbidities such as diabetes mellitus or cardiovascular diseases (4). Hyperkalemia is managed by 

eliminating risk factors and through interventions aimed at directly lowering serum K+.  

Most intracellular K+ is contained in muscle cells where it acts on the membrane potential. The physiological effect 

of this electrolyte depends on a normal serum concentration. K+ concentration decreases after renal excretion and 

sequestration of muscle and liver cells (5). K+ remains stable between meals due to its release mainly from muscle and 

liver cells. The distribution of K+ between the intracellular and extracellular space is maintained by balancing the activity 

of the Na/K-ATPase with K+ leak (6) (Table I). Effectors of K+ uptake and leak include insulin, catecholamines, mineral 

corticoids, tonicity, exercise, and acid-base status (7). More than 95% of K+ resides intracellularly and most of it is 

absorbed in the small intestine.  
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Table I. Na⁺/K⁺ ATPase dysfunction can cause the following dysfunctions to occur. 

• Accumulation of intracellular Na⁺ and accumulation of extracellular K⁺.  

• Alteration of channels affecting repolarization.  

• The elevation of K⁺ normally stimulates aldosterone release via the adrenal cortex by increasing 

expression of the Na⁺/K⁺ ATPase channel in the kidneys for K⁺ excretion. 
 

• Impaired aldosterone function (Addison's disease, ACE inhibitors) worsens hyperkalemia.  

 

Increased K+ intake causes hyperkalemia which may result in impaired renal excretion and/or cellular redistribution 

(8). The kidney has an important role in maintaining K+ homeostasis and healthy kidneys possess a great ability to dispose 

of excess K+, maintaining normal K+ serum levels even with intakes as high as 400 mmol per day (9). Most of the filtered 

K+ is reabsorbed in the proximal convoluted tubule and the loop of Henle. Renal K+ balance is largely determined by K+ 

secretion occurring in the distal nephron and collecting duct (10). 

DISCUSSION 

In the brain, K+ is crucial for nerve signaling and for central nervous system (CNS) functioning, but excessive levels 

can disrupt normal neurological processes (11). Hyperkalemia is defined as an elevated level of K+ in the blood. It can 

significantly impact brain function and may contribute to neuroinflammation (12). In the brain, K+ is crucial for nerve 

signaling and CNS function, but excessive levels can disrupt normal neurological processes (13). Hyperkalemia impairs 

nerve transmission, causing muscle weakness, fatigue, and in some cases, even paralysis (14). In addition, severe cases 

of hyperkalemia can cause cognitive dysfunction with confusion, disorientation, and coma (12). In rarer cases, seizures 

can occur due to disrupted neuronal excitability.  

K+ is also an important element for the function of immune cells (15). In cases of hyperkalemia, there may alterations 

in the functioning of immune cells, such as T lymphocytes, causing an Ig deficiency, because, in the immune system, 

antibody-producing B lymphocytes and T cells (particularly IL-4-producing T helper cells) are interdependent (16). 

Excess K+ can affect other immune cells such as macrophages by altering their ability to phagocytose infectious agents 

and to present antigen correctly (17,18). Immune dysfunction due to hyperkalemia affects inflammation and activation of 

the NLRP3 inflammasome (19). High extracellular K+ inhibits the NLRP3 inflammasome, reducing excessive 

inflammatory responses. In hyperkalemia, the dysregulation of immune cells can lead to chronic inflammatory disorders, 

while initially it may suppress inflammation (20).  

Hyperkalemia significantly affects neurons because of the crucial role of K+ in maintaining resting membrane 

potential and neuronal excitability (21). Hyperkalemia causes neurons to depolarize from their resting membrane 

potential. Neurons maintain a resting membrane potential of about -70 mV, largely due to the Na⁺/K⁺ pump and K+ leak 

channels. Extracellular hyperkalemia reduces the K+ gradient with less influx, causing depolarization and mild 

hyperkalemia can produce increased neuronal excitability (22). If there is mild extracellular hyperkalemia of 5.5-6.5 

mEq/L, neurons are more excitable because they are closer to the threshold for action potentials. These effects can lead 

to spontaneous or excessive discharges, potentially causing muscle spasms, paresthesias, or seizures, while severe 

hyperkalemia can lead to reduced excitability and paralysis. In severe hyperkalemia (>7.0 mEq/L), persistent 

depolarization inactivates voltage-gated Na⁺ channels, preventing them from reopening for further action potentials. 

These effects cause neuronal and muscle paralysis, which may contribute to respiratory failure or cardiac arrhythmias 

(23). 

 Non-physiological neuromuscular transmission leads to muscle weakness and paralysis, clinical manifestations 

related to neuronal dysfunction (24). In addition, abnormal sensations such as tingling or numbness (paraesthesia), and in 

extreme cases, seizures, and altered mental states such as confusion, lethargy, or coma may occur (25). 

CONCLUSIONS 

Hyperkalemia disrupts neuronal function by altering the resting membrane potential and action potential generation. 

Mild cases increase excitability, while severe cases lead to neuronal paralysis. Proper management of K+ levels is 

essential to prevent life-threatening complications. 
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INTRODUCTION 

Asthma is a recurrent lung disease characterized by respiratory noises, paroxysmal coughing and dyspnea due to 

hyperactivity with bronchospasm of the tracheobronchial airways that results in difficulty in breathing (1). Asthma is a 

chronic inflammatory disease of the airways which affects the respiratory system but also has complex interrelationships 

with the brain through biochemical and neuroimmune pathways (2). Chronic asthma affects neurotransmitters such as 

serotonin, dopamine, and gamma-aminobutyric acid (GABA), which are essential for mood regulation and cognition.  

The onset of the disease can occur at any age but is more frequent between the ages of three to eight years old, with a 

higher incidence in males. Some risk factors for asthma include low birth weight, living in urban areas, and a family 

history of asthma or allergies (3). The etiology is multifactorial, from exposure to inhaled or ingested allergens, to 

infections, smoking, or inhalation of airway irritants. Two-thirds of subjects have allergic diathesis with immune 

responses mediated by IgE (4). Some studies have highlighted the role of gastroesophageal reflux in adenoid hypertrophy 

and chronic sinusitis (5).  

The symptomatology of asthma is characterized by dyspneic crises with prolonged, labored, and noisy expiration, 

accompanied by rhonchi, rales, and wheezing. During the attack, the patient may become cyanotic, with sweating, 

bradycardia, and emission of fluid and bronchial secretion. Critical episodes may be rare or frequent and may involve the 

heart and pulmonary circulation, which could possibly lead to cardiac failure in the most serious cases (6). 

DISCUSSION 

Asthma and the central nervous system (CNS) are linked because the CNS regulates the airway muscles and 

inflammatory responses (7). Stress or anxiety can trigger asthma symptoms or worsen them by affecting airway control 

and inflammation (8). In fact, CNS activity can influence asthma symptoms, primarily through the interaction between 

the nervous and respiratory systems. Stress and emotional distress are processed in the CNS and can cause 

hyperventilation or airway constriction, leading to asthma exacerbation. Stress triggers the release of cortisol and other 

hormones, worsening airway inflammation (9). The autonomic nervous system regulates airway tone. Overactivation of 

the parasympathetic nervous system can lead to bronchoconstriction, while sympathetic stimulation may affect airway 

relaxation (10). Some medications that act on the CNS, such as sedatives or certain opioids, may depress respiratory drive 

or affect airway responsiveness, potentially triggering symptoms in asthmatic individuals (11).  
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CNS-driven hyperventilation can irritate the airways, reduce CO2 levels in the blood, and cause bronchoconstriction. 

This can mimic or worsen asthma symptoms. Asthma is linked to higher rates of anxiety, depression, and cognitive 

impairments, likely through the shared inflammatory and neurochemical pathways. Activated Th2 immune responses lead 

to the elevation of IL-4, IL-5, IL-13, and IgE levels, contributing to lung inflammation and potentially signaling 

neuroimmune changes (12).  

Some activated immune cells, such as mast cells (MCs) in the airways and brain, can release neuropeptides on site, 

causing airway inflammation, mucus production, and constriction, which worsens asthma symptoms (13). Asthma, MCs, 

and the brain are interconnected in ways that highlight the intricate link between the immune system, inflammation, and 

the nervous system (14). MCs are white blood cells involved in allergic reactions and are central to asthma 

pathophysiology. They reside in tissues like the airway epithelium, where they release histamine, leukotrienes, and 

cytokines in response to allergens. MCs contribute to bronchoconstriction, airway inflammation, and mucus 

overproduction, which are all hallmarks of asthma (15). MCs are present in the brain, especially near blood vessels and 

the meninges and contribute to neuroinflammation by releasing histamine and cytokines that may potentially influence 

conditions like migraine, multiple sclerosis, and mood disorders (16). 

 Inflammatory signals from MCs in asthma may influence the blood-brain barrier (BBB), leading to increased 

neuroinflammation (15). Their overactivation has been implicated in neuropsychiatric conditions such as autism spectrum 

disorders, anxiety, and post-traumatic stress disorder. Understanding the interrelationship between asthma, MCs, and the 

brain allows for a better understanding of asthma management by considering not only respiratory symptoms, but also 

the broader systemic and neurological impacts. The interaction between Th2 immune responses, asthma, and brain 

function is an important area that still needs to be explored further (17). 

T helper cells (CD4+ T cells) are a subset of Th2 cells that orchestrate immune responses against extracellular 

pathogens. In allergic asthma, Th2 cells are central to allergic responses, driving IgE production and recruitment of other 

immune cells such as eosinophils and MCs (18). Th2 cells drive IgE production and recruitment of other immune cells. 

Th2 cells secrete cytokines such as IL-4 that promote IgE class switching in B cells. Inflammatory mediators in asthma, 

such as IL-1, IL-6, and TNF, might affect cognitive function, mood, and behavior (19). Stress or neural dysfunction can 

exacerbate asthma by promoting Th2-biased immune responses.  

IL-4 and IL-13 are mediators of allergic asthma inflammation and may restrict the brain by promoting systemic 

inflammation (20). IL-6, although not strictly related to Th2 cells, may have downstream effects on both asthma and 

neuroinflammation, while IL-33, an alarmin cytokine, may be involved in Th2-mediated responses and neuroimmune 

interactions.  

There’s also evidence that asthma can influence brain function, possibly due to low oxygen during severe attacks or 

chronic inflammation (21). Asthma inflammation can increase the BBB's permeability, allowing systemic inflammatory 

mediators such as cytokines and chemokines to enter the brain and affect its homeostasis. This may exacerbate 

neuroinflammation, cognitive decline, or psychiatric disorders. Asthma triggers oxidative stress in both lung and brain 

tissues due to excessive production of reactive oxygen species (ROS), which can impair mitochondrial function in neurons 

and contribute to neurodegeneration.  Pro-inflammatory cytokines can decrease serotonin availability, contributing to 

depression or anxiety, which are common comorbidities of asthma. 

CONCLUSIONS 

Novel therapies focusing on vagal nerve stimulation or antioxidants might benefit asthma and brain dysfunction. Anti-

inflammatory drugs including corticosteroids and biologics targeting cytokine mediators might also indirectly improve 

brain health. Anti-IgE treatments such as omalizumab (a monoclonal antibody used during the treatment of severe-to-

moderate persistent asthma in patients who cannot control symptoms with corticosteroids) reduce the symptoms of 

allergic asthma. Cytokine inhibitors are now also used in severe asthma. In addition, addressing stress and improving 

mental health can modulate immune responses and potentially improve asthma outcomes. 
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