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As every year since the departure of Rita Levi-
Montalcini (30 December 2012), EBRI Foundation 
has organized in her memory a magistral lecture on 
her birthday anniversary (22 April) with a one-day 
Workshop on a special topic.

This year the EBRI Rita Levi-Montalcini Lecture 
was delivered by professor Susumu Tonegawa 
(Ricken-MIT, USA) on: “Engrams for genuine and 
false memories in memory of Rita Levi-Montalcini”. 
This was followed by an International Workshop 
entitled “Engrams and memory traces”.

“Engrams” are memory traces stored in our 
brain in response to experience. Episodic memories, 
essential for day-to-day living, are made of 
associations of several elements, including objects, 
space and time. These associations are encoded by 
enduring structural changes  at the level of synapses 
and specialized neuronal circuits  in selective brain 
areas such as the hippocampus and the cortex. 

Tonegawa and colleagues, have elegantly 
demonstrated that specific neuronal ensembles 
involved in the representation of memory engrams 
cannot be only visualized but also reactivated using 
optogenetic tools that allow cells to be selectively 
turned on or off by light.

Outstanding scientists from Europe and USA 
participated with their original works in the 
Workshop which represented a great success. 
Therefore, as a tribute to Rita Levi-Montalcini 
we have decided to prepare a special issue of the 
European Journal of Neurodegenerative Diseases, 
a new Journal published during the first 2 years 
by EBRI Foundation and of which Rita was the 
Honorary President. Unfortunately, due to the short 
time available before the deadline, we have missed 
some contributions, but luckily we have managed to 

integrate these with other invited papers.
In particular, after an Introduction by Antonino 

Cattaneo, K. Cowansage (from the Scripps Research 
Institute of La Jolla, CA, USA) discusses how new 
genetic tools allow manipulating selective neuronal 
populations in the anterior cingulate, retrosplenial, 
medial prefrontal and posterior parietal cortices at 
early stages of memory consolidation.

J. Campi and R. Quian Quiroga (from the Centre 
for Systems Neuroscience, University of Leicester, 
Leicester, UK) describe the advantages and 
disadvantages of experiments aimed at elucidating 
the mechanisms by which memory traces are stored 
and recalled in both animals and humans.

J. Csicsvari  (from the Institute of Science and 
Technology, Austria) highlights the functional 
role of network synchronization underlying sharp 
waves/ripples activity in the hippocampal formation 
and beyond, not only in learning and memory 
consolidation but in also planning and short term 
memory processes. 

A particular form of network synchronization 
occurring in the hippocampus immediately after birth 
is represented by the so-called Giant Depolarizing 
Potentials or GDPs. E. Cherubini (from the 
International School for Advanced Studies, Trieste, 
Italy) provides evidence that GDPs act as coincident 
detector signal for enhancing synaptic efficacy at 
emerging glutamatergic and GABAergic synapses.

Synaptic dysfunction and memory loss have 
devastating consequences in the daily life of patients 
affected by Alzheimer Disease (AD) or other forms 
of Dementia. 

P. Regan, E. Hogg, D. J. Whitcomb and K. Cho 
(from the School of Clinical Sciences, Faculty of 
Medicine and Dentistry, and the Centre for Synaptic 
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nitrated NGF species, which  may potentially trigger 
p75NTR-dependent apoptosis in target cells.

We wish to express our gratitude to all scientists 
who rendered possible this special issue. In this 
way EBRI keeps alive the extraordinary figure 
of Rita Levi-Montalcini,  a true giant in Science. 
Her discovery of NGF, the progenitor of other 
neurotrophic factors have greatly contributed to 
understanding the basic molecular mechanisms 
of synaptic plasticity, thus allowing to open new 
avenues for the treatment of Alzheimer’s and other 
neurodegenerative diseases.

Plasticity, University of Bristol, UK), suggest that 
an aberrant LTD-like downscaling of synaptic 
transmission, due to AMPA receptor endocytosis and 
synapse elimination, may trigger cognitive deficits 
in AD. 

In the final article, M. Richter, V. Varela, E. Trias 
and L. Barbeito (from the Institut Pasteur and the 
Instituto de Investigaciones Biológicas Clemente 
Estable, Montevideo, Uruguay) review recent data 
showing that the neuro-inflammatory response 
associated with neurodegenerative diseases leads 
to  activation of glial cells and increased levels of 
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The 2014 Rita Levi Montalcini Lecture is part 
of an annual series established by the European 
Brain Research Institute to commemorate the life 
and legacy of a woman whose outstanding scientific 
contributions have had a significant impact in the 
field of Neurosciences and beyond. The Lectures, 
delivered by distinguished scientists, open an 
international scientific event. The first edition of 
the Rita Levi-Montalcini Lecture was delivered in 
2013 by Nobel Laureate Aaron Ciechanover.  This 
year’s Lecture was held by Nobel Laureate Susumu 
Tonegawa and was followed by a Workshop on 
“Engrams and memory traces”.

It is with great pleasure and honour that I introduce 
Susumu Tonegawa, Picower Professor of Biology 
and Director of the RIKEN-MIT Center for Neural 
Circuit Genetics at the Massachusetts Institute of 
Technology.

Tonegawa represents a truly remarkable and 
outstanding scientist, whose scientific achievements 
are landmarks in both immunology and neurosciences. 
Susumu Tonegawa’s contributions were recognized 
with a Nobel Prize in Physiology or Medicine 
in 1987 for his discovery on how the immune 
system generates its highly diverse repertoire of 
antibodies. He later continued to make fundamental 
contributions to science in an entirely different field: 
neuroscience. Using advanced techniques of gene 
manipulation, Tonegawa has made fundamental 
discoveries to unravel the molecular, cellular and 
neural network mechanisms that underlie learning 
and memory. His studies have broad implications for 
the understanding of human memory.

After studying Chemistry at Kyoto University, 
Tonegawa became interested in the then blossoming 
science of molecular biology and his mentor 
Itaru Watanabe advised him to enroll in an 
American graduate school. Following his Ph.D on 
transcriptional control of phage lambda with Masaki 
Hayashi at UCSD, he continued his postdoctoral 
research with Renato Dulbecco at Salk Institute, 
working on eukaryotic molecular biology of tumour 
viruses. By the end of 1970 his US visa was to expire 
and close to the end of that year Dulbecco wrote 
him a letter from Rome, where he was travelling, 
suggesting that he send an application letter to the 
newly established Basel Institute for Immunology 
in Switzerland. “Thanks partly to this remarkably 
prophetic letter and partly to the US immigration 
law, that prevented me from remaining in the US, in 
February 1971 I found myself in this cosy Swiss town 
almost completely surrounded by immunologists”, 
recalls Tonegawa. Despite having little knowledge 
of immunology, he soon became intrigued by the 
question that had long puzzled immunologists: how 
does the immune system generate the multitude of 
antibodies to attack virtually any virus or pathogen, 
from only a limited number of genes?  He was in 
his 30s when he discovered the solution of the GoD 
problem  (Generation of Diversity), demonstrating 
that antibody diversity is the result of the 
combinatorial shuffling of genes that are rearranged 
to produce specific antibodies. 

Tonegawa’s scientific interest switched to 
neurobiology in the early 1990s, when he began 
exploring the molecular underpinnings of learning 
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may represent a component of the stored  memory 
engram.

The necessity question, for a candidate memory 
trace, was first addressed in 2009 (Han et al 2009; 
Zhou et al 2009) by a novel loss-of-function approach 
to perturb a component of the memory engram. By 
selectively ablating or inhibiting sparse population 
of cells in the amygdala that are preferentially 
recruited into the representation of a fear memory, it 
was possible to selectively interfere with the recall of 
that memory in mice, proving the necessity question 
for that memory trace.

Against this background, the mimicry experiments 
(to address the sufficiency condition) for memory 
engram studies remained a considerable challenge, 
because of the lack of tools that could precisely label 
and control selected neurons involved in a particular 
memory.  Demonstrating the existence of memory 
engrams at the cellular level requires a system that can 
selectively label and activate the memory engram-
bearing cells to induce the predicted behavioural 
changes caused by learning. To selectively activate 
a cell population bearing an engram for a particular 
memory, one needs to be able to isolate and label 
these cells for future manipulation.

This is precisely what Tonegawa’s recent papers 
(Liu et al 2012; Ramirez et al 2013) demonstrated, 
and what has been illustrated and discussed by 
Tonegawa in his EBRI Levi-Montalcini Lecture. 
Tonegawa exploited transgenic mice in which the 
optogenetic probe Channelrhodopsin 2 (ChR2)  
could be expressed specifically in activated dentate 
gyrus granule cells. Activation of ChR2 by light 
causes the cells that express ChR2 to fire. The 
expression of ChR2 could be prevented  by feeding 
the mice doxyclin (Dox), allowing to temporally 
restrict the expression of the optogenetic probe. A 
group of Dox fed mice were allowed to habituate 
to a neutral environment context (context A). The 
mice were then taken off Dox, to open a window 
for activity-dependent labelling with ChR2 and 
subsequently underwent fear conditioning in another 
spatial context (context B). After this conditioning, 
the animals were given Dox again (to prevent further 
ChR2 expression) and, on the following day, tested 
for their fear response in the original, non fearful 
context A. Fear response was initially low but 
dramatically increased when the ChR2 expressing 

and memory in mice. His recent work, that will 
be described in his 2014 Levi-Montalcini Lecture 
on “Engrams for genuine and false memories”, 
addresses questions which lie at the core of our current 
framework thinking on the mechanisms of memory. 
How memories are represented at the neuronal level 
in the brain is a central question in neurosciences. It 
is thought that a learning experience is encoded by 
a sparse population of neurons, forming a memory 
trace. The idea that memories are represented as 
physical traces inside our brain goes back as far as 
Plato (Figure 1), the great Greek philosopher who 
in the Thaetetus formulated the theory with a very 
vivid and dynamic metaphor of memory as an 
image inscribed on a wax tablet. Many centuries 
later, this metaphor was expressed in more scientific 
terms by the German neuropsychologist Richard 
Semon (1921), who coined the word “engram”: ‘Its 
result, namely, the enduring though primarily latent 
modification in the irritable substance produced by 
stimulus, I have called an Engram…’. Searching 
the engram, and defining its nature and properties is 
one of the big questions in modern neurosciences.  
The engram theory of memory posits that when 
a memory is formed, a subpopulation of neurons 
will be excited and stay excited latently. When part 
of the total information at the time of storage is 
subsequently available, it will re-excite the engram 
for recall. A crucial test for the engram theory of 
memory, providing experimental evidence for 
memory engrams, requires at least three steps: i) 
the identification of neuronal populations that could 
represent candidate engrams in a certain brain region, 
ii) blocking or interfering with those cells should 
abolish a given memory and, finally, iii)  artificially 
activating that cell population should mimic the 
memory process. The last two points correspond to 
addressing questions of necessity and sufficiency for 
a cell population being defined as a memory engram.

The activity-dependent expression of immediate 
early genes (IEG)  such as c-fos and Arc in synaptically 
activated neurons has been used by many studies, in 
the past 15 years, as an indicator of recent neural 
activity. For instance, the cellular expression pattern 
of these IEGs in the hippocampus is different for 
different spatial contexts, but remains stable upon re-
exposure to the same context, providing  molecular 
signatures of memories. Therefore, these cells 
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the mice were simultaneously administered a US to 
form an artificial associative fear memory. Indeed, 
the experiments revealed that when placed back 
in context A, the mice displayed increased fear 
responses, in a context in which they were never 
actually shocked. Importantly, when placed in a novel 
context C, the animals showed no fear, indicating 
that the fear response is context specific and not the 
result of generalization. The optogenetic inception of 
a false memory provides further demonstration for 
the engram theory and may perhaps parallel some 
types of false recognition memories in humans.

It is well recognized that the way we feel about 
a past experience can change over time, while 
other details of the memory remain intact. The 
malleability of the valence of memories has been 
used clinically to treat maladaptive behaviours. 
The neronal mechanisms and brain circuits that 
enable the switching of the valence of memories 
are well characterized in a recent optogenetic-based  
study (Redondo et al 2014). Tonegawa applied 
their memory engram cell-manipulation technique 
and artificially altered the emotional valence of a 
memory in mice. The results showed that in the DG 

cells (i.e. cells associated  to the “engram” of 
context B) were stimulated by light. This, the fear 
memory for context B could be artificially induced 
in context A, by activating a synthetic memory trace. 
This study proved the sufficiency question for the 
engram theory, that is, that reactivation of neurons 
that encode a fear memory is sufficient to induce 
recall of that memory.  Building on the previous 
finding, that DG hippocampal neurons recruited 
during learning define an active cell population that 
is sufficient for memory recall upon subsequent 
activation, Tonegawa and collaborators went on 
to ask the question (Ramirez et al 2013): can an 
artificially activated contextual memory engram 
serve as a conditioned stimulus (CS) and become 
associated with an unconditioned stimulus (US) to 
form an artificial CS-US association?  To test this, 
mice were taken off Dox, so that cells active during 
exploration of neutral context A would be labelled 
with ChR2. Mice were then put back on Dox and fear 
conditioned in context B, while optically activating 
labelled cells (i.e. cells labelled in context A) with 
light. The hypothesis was that light-activated context 
A engram cells could produce an artificial CS while 

Fig. 1. The School of Athens by Raphael 1509, Stanza della Segnatura, The Vatican Museums.
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and extinction? And, finally, probably the question 
that is more directly relevant to a dramatic human 
disease: how do these studies connect to the memory 
loss occurring during the progression of Alzheimer’s 
disease, and how can the knowledge acquired help in 
finding new therapeutic strategies for this devastating 
condition?

The Lecture delivered by Susumu Tonegawa 
most fittingly opened the workshop on “Engrams 
and Memory Traces”, which displays cutting-edge 
research from outstanding scientists worldwide; 
the best way to honour the memory of the great 
neuroscientist (Fig. 2).
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Coherent membrane oscillations are a hallmark of developmental networks.  In the hippocampus, 
network-driven giant depolarizing potentials or GDPs are generated by the interplay of glutamate and 
GABA that in the immediate postnatal period is depolarizing and excitatory. Here, some recent data are 
reviewed concerning the mechanisms by which GDPs are generated and their functional role in shaping 
synaptic currents at emerging mossy fiber (MF)-CA3 and Schaffer collateral-CA1 synapses. Using a 
pairing procedure consisting in correlating GDPs-associated calcium rise in the postsynaptic cell with 
stimulation of afferent inputs we were able to persistently enhance synaptic strength at both synapses. 
This associative type of learning caused the appearance of synaptic responses or persistently enhanced the 
number of successes in “presynaptically” silent or low probability synapses, respectively. The induction 
of LTP was postsynaptic and was mediated by calcium rise via voltage-dependent calcium channels 
activated by the depolarizing action of GABA during GDPs since it was prevented by the calcium chelator 
BAPTA and by nifedipine. However, the expression of LTP was presynaptic, as assessed in double pulse 
experiments that unveiled a significant reduction in the paired-pulse ratio and a significant increase in the 
inverse squared value of the coefficient of variation of response amplitude, all indices of presynaptic release 
probability. The postsynaptic induction and presynaptic expression of LTP suggest the involvement of a 
retrograde messenger that, at least at Schaffer collateral-CA1 synapses, was identified as BDNF. Acting on 
pre and postsynaptic TrkB receptors, respectively, BDNF enhanced the probability of glutamate release 
and activated the MAPK/ERK signalling pathway, leading to transcriptional regulation and new protein 
synthesis. In conclusion, GDPs would translate specific patterns of pre and postsynaptic activity into long-
lasting changes in synaptic strength and would stabilize synaptic connections, thus contributing to the 
structural refinement of the hippocampal circuit.

Coherent network oscillations represent a 
hallmark of developmental networks. They can be 
detected at late embryonic or early postnatal ages 
in several CNS structures, including the retina 
(Feller et al, 1997), the neocortex (Garaschuk et al, 
2000), the hippocampus (Ben-Ari et al, 1989), the 
hypothalamus (Chen et al, 1996), the cerebellum 
(Eilers et al, 2001) and the spinal cord (O’Donovan, 

1999). This activity, which may differ in its specific 
pattern among different brain regions, is crucial for 
synaptic wiring and refinement of local neuronal 
circuits according to the Hebbian rule “neurons 
that fire together wire together”. In the developing 
hippocampus, during the first week of postnatal 
life, the so-called Giant Depolarizing Potentials or 
GDPs (Ben-Ari et al, 1989; Ben-Ari et al, 2007), 

COHERENT NETWORK-DRIVEN OSCILLATIONS AS COINCIDENT DETECTORS 
FOR ENHANCING SYNAPTIC EFFICACY IN THE DEVELOPING HIPPOCAMPUS
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resting membrane potential (Vm). Therefore, 
GABA hyperpolarizes the membrane and inhibits 
neuronal firing through an inwardly directed flux of 
chloride (Cherubini, 2012). In immature neurons, 
ECl- is above Vm. Therefore, GABA depolarizes the 
membrane through an outwardly directed efflux 
of chloride. To be excitatory, GABA-mediated 
membrane depolarization should reach the threshold 
for action potential generation. This usually occurs 
via the activation of a persistent, non-inactivating 
sodium conductance that by amplifying subthreshold 
synaptic responses (Valeeva et al, 2010) bring them 
to threshold (Cherubini et al, 1991; Ben-Ari, 2002; 
Owens and Kriegstein, 2002; Ben-Ari et al, 1997; 
Mohajerani and Cherubini, 2005). However, it is 
worth mentioning that GABA can depolarize its 
targets and still exert an inhibitory effect through 
“shunting” inhibition (Mohajerani and Cherubini, 
2005; Banke and McBain, 2006). The intracellular 
chloride concentration is under control of two main 
cation-Cl- co-transporters the NKCC1 and KCC2 
that import and export [Cl-]i, respectively (Rivera et 
al, 1999; Payne et al, 2003). The unbalance between 
these two transporters is responsible for the high 
[Cl-]i found early in postnatal life. GDPs disappear 
towards the end of the second postnatal week when 
GABA becomes inhibitory (Ben-Ari et al, 1989). 
The developmentally up-regulated expression of the 
K+/Cl- co-transporter KCC2 is  responsible for this 
modification (Rivera et al, 1999). The depolarizing 
action of GABA during GDPs results in calcium 
influx through the activation of voltage-dependent 
calcium channels and N-methyl-D- aspartate 
(NMDA) receptors (Leinekugel et al, 1997; 
Garaschuk et al, 1998). 

The appearance of GDPs is preceded by a well 
defined sequence of events. At late embryonic stages 
of development, uncorrelated spontaneous activity 
consisting in calcium action potentials occurs in 
cortical structures. Calcium signalling plays a crucial 
role in regulating a variety of developmental processes 
including neurogenesis, neuronal migration and 
differentiation (Owen and Kriegstein, 2002; Komuro 
and Rakic, 1996). Synchronous activity emerges 
at birth under the form of spontaneous plateau 
assemblies or SPAs. SPAs involve small groups of 
neurons coupled by gap-junctions and consist in 
non-synaptic membrane oscillations generated by 

constitute a primordial form of synchrony between 
neurons, preceding more organized forms of activity 
such as theta and gamma rhythms, thought to be 
associated with higher cognitive functions (Buzsáki 
and Draguhn, 2004). 

GDPs consist in recurrent long lasting membrane 
depolarisations (up to 50 mV) giving rise to bursts 
of action potentials, separated by long-lasting 
quiescent intervals (Ben-Ari et al, 1989). This 
discontinuity pattern is reminiscent of the “tracė 
discontinu” firstly described by Dreyfus-Brisac in 
the electroencephalogram of immature babies and 
characterized by intermittent bursts separated by 
periods of virtually complete suppression of activity 
(Dreyfus-Brisac and Larroche, 1971). A similar 
pattern has been described in the hippocampus of  
fetal macaque during the second half of gestation 
(Khazipov et al, 2001) suggesting that, at least in 
vertebrates, this activity is well preserved during 
evolution. The in vivo counterparts of GDPs are the 
sharp waves that can be observed in rat pups during 
distinct behavioural states such as immobility, sleep 
and feeding (Leinekugel et al, 2002).

IN THE IMMATURE HIPPOCAMPUS, THE 
DEPOLARIZING ACTION OF GABA AND 

GLUTAMATE ACCOUNT FOR NETWORK-
DRIVEN GDPs

GDPs are generated by the synergistic action of 
glutamate and GABA that, at this developmental 
stage, is depolarizing and excitatory (Ben-Ari et 
al, 1989; Cherubini et al, 1991; Bolea et al, 1999). 
Electrophysiological recordings associated with 
fura-2-based fluorometric calcium imaging have 
demonstrated that within a particular hippocampal 
area, GDPs involve the synchronous discharge 
of principal cells and interneurons (Garaschuk et 
al, 1998). GABAergic interneurons usually drive 
principal cells, as demonstrated by the temporal 
relationship of glutamatergic and GABAergic 
inputs during GDPs. GABA, released from local 
interneurons binds to GABAA receptor channels and 
triggers conformational changes that facilitate the 
inflow or outflow of chloride (Cl-) inside the cell, 
depending on the equilibrium potential for this anion 
(ECl-). In adult neurons, the level of intracellular 
chloride is relatively low and ECl- is below the 
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synchronous activation of a relatively small number 
of cells. At least in the CA3 area, they can be still 
detected in small islands comprising ~ hundreds of 
neurons, isolated from the rest of the hippocampus 
(Khazipov et al, 1997; Garaschuk et al, 1998; 
Bolea et al, 1999). They involve the activation of 
both principal cells and interneurons (Leinekugel 
et al, 1997; Garaschuk et al, 1998; Bonifazi et al, 
2009) which by releasing GABA and glutamate 
activate GABAA and AMPA receptors, respectively. 
Interestingly, at single cell level, GABAA and AMPA 
receptors are already present at birth. However, these 
receptors are sequentially activated being the degree 
of synaptic connections correlated with the level 
of dendritic arborization (Tyzio et al, 1999). Three 
stages of develoment can be identified: i. silent 
neurons with no apical dendrites; ii. GABA-only 
neurons with small apical and not basal dendrites; 
iii. GABA-and glutamate neurons with extensive 
apical and basal dendrites. These observations 
suggest that GABAergic synapses form prior to 
glutamatergic ones.  At the network level however, 
GDPs express both components, although the 
magnitude of the GABAergic conductance exceeds 
that of the glutamatergic one (GDPs reversal is 
close to EGABA; Ben-Ari et al, 1989; Bolea et 
al, 1999). The glutamatergic component can be 
unveiled by blocking the GABAergic one by loading 
the cell with an intracellular solution containing 
potassium fluoride, which only poorly permeates 
GABAA receptor channels. In this condition, GDPs 
reverse polarity at a membrane potential close to 
the equilibrium potential for α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptor-
mediated responses (EAMPA; Bolea et al, 1999). The 
two components of GDPs can be examined by holding 
two neighbouring pyramidal neurons at EGABA (fixed 
at -70 mV) and EAMPA (~0 mV), respectively. With 
this procedure it became clear that the GABAergic 
component precedes always the glutamatergic one 
by several ms suggesting that principal cells are 
driven by GABAergic interneurons (Mohajerani 
and Cherubini, 2005). Furthermore, using network 
dynamics imaging, online reconstruction of 
functional connectivity and targeted whole-cell 
recordings from immature hippocampal slices, it was 
recently demonstrated that functional hubs composed 
of subpopulations of GABAergic interneurons with 

the activation of intrinsic membrane conductances 
(Crepel et al, 2007). SPAs are modulated by oxytocin, 
a maternal hormone essential for the induction of 
labor, known to transiently converts GABA action 
from excitatory to inhibitory during parturition (Tyzio 
et al, 2006). In addition, SPAs are facilitated by the 
depolarizing action of GABA which activates voltage-
dependent calcium channels and facilitates the relief of 
the voltage-dependent magnesium block from NMDA 
receptors, thus allowing calcium entry and activation 
of second messengers. 

Before synapse formation, GABA can be released 
in a calcium- and SNARE-independent way by non-
conventional release sites such as growth cones 
and astrocytes and can diffuse away to activate 
extrasynaptic receptors in a paracrine fashion 
(Demarque et al, 2002). The absence of an efficient 
uptake system will enable GABA to accumulate in 
the extracellular space and to reach a concentration 
sufficient to exert its depolarizing and excitatory 
effects on distal neurons. As the network matures and 
the density of functional synapses increases, synaptic-
driven network oscillations such as ENOs and GDPs 
replace SPAs. A down regulation in the expression of 
connexins via CREB signalling, following activation 
of NMDA receptors, may contribute to SPAs silencing 
(Arumugam et al, 2005). ENOs, initially thought to 
constitute the cortical counterpart of hippocampal 
GDPs, have been shown to precede and coexist during 
a restricted period of time with GDPs (Allene and 
Cossart, 2010). ENOs differ from GDPs not only 
because they involve a different neurotransmitter 
(glutamate instead of GABA) but also because they 
exhibit  different spatio-temporal dynamics (Allene 
et al, 2008). ENOs are low frequency oscillations 
dysplaying slow kinetics that gradually involve 
the entire network  whereas GDPs are recurrent 
oscillations that repetitively synchronize local neuronal 
assemblies. In the neocortex, ENOs are critically 
dependent on the activation of NMDA receptors 
(Garaschuk et al, 2000) and NMDA signaling may 
contribute to recruit AMPA receptors to the synapses 
and to convert postsynaptically silent conenctions into 
active ones (Voronin and Cherubini, 2004). 

HOW ARE GDPs GENERATED?

It is known that to be generated GDPs need the 
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and recur more regularly (Safiulina et al, 2008).
In thalamo-cortical neurons, a striking 

contribution to rhythmogenesis is given by 
pacemaker neurons, characterized by an unstable 
behaviour caused by the interplay of depolarizing 
and hyperpolarizing conductances (Pape, 1996). 
Pacemaker cells are typically depolarized by the 
slow hyperpolarization-activated cation current 
Ih, carried by HCN channels. In these neurons, the 
oscillatory period last from tens of milliseconds to 
seconds. In neonates, the intervals between GDPs 
is much longer and therefore the oscillatory period 
could not be set solely by this conductance. By 
interacting with other membrane conductances and 
network properties, Ih may contribute to network 
synchronization as suggested by the possibility to 
disrupt GDPs in principal cells and interneurons, 
known to be endowed since birth with the HCN1 
isoform of HCN channels, with extracellular cesium 
(Strata et al, 1997) or with the selective Ih blocker 
ZD 7288 (Bender et al, 2005). It should be stressed 
however, that Ih is not essential for GDPs generation 
since synchronous oscillations may occur also in 
neurons lacking HCN channels (Bender et al, 2005). 
GDPs can be also facilitated by cell-coupling via gap 
junctions, whose expression early in development 
has been well documented (Rozental et al, 2000). 
This type of signaling which plays a crucial role in 
SPAs generation may persist at later developmental 
stages when SPAs are replaced by  GDPs (Strata et 
al, 1997). It would be of interest to know whether in 
connexin-36 knock-out mice, which exhibit disrupted 
gamma oscillations (Hormuzdi et al, 2001) and 
severe impairment in spatial coding and cognition 
(Allen et al, 2011), GDPs develop normally.

GDPs typically terminate by a slow 
afterhyperpolarization (AHP), lasting few sec 
and mediated by calcium-activated potassium 
conductances (Ben-Ari et al, 1989;  Sipila et al, 
2006). Blockade of the AHP decreases the interval 
between GDPs, suggesting that the frequency of 
these spontaneous events is set by the kinetics of this 
conductance. However, other factors may contribute 
to the observed periodicity including a delayed 
activation of GABAB receptors by GABA released 
during interneuron firing, as suggested for interictal 
population events generated in the CA3 area by 
blocking GABAA-mediated inhibition (Menendez 

large axonal arborizations are able to synchronize 
large ensembles of principal cells (Bonifazi et al, 
2009). 

In analogy with the synchronized activity 
generated in the disinhibited hippocampus 
(Menendez de la Prida et al, 2006), it seems likely 
that GDPs emerge when a sufficient number 
of cells fire and the excitability of the network 
attains a certain threshold within a restricted time 
window. Simultaneous recordings from pairs of 
CA3 pyramidal neurons have shown a concurrent 
increment in the instantaneous firing frequency 
previous to GDPs onset which correlates with an 
increased frequency of spontaneously occurring 
synaptic events (Menendez de la Prida and Sanchez-
Andres, 1999). Although the entire hippocampal 
network possesses the capacity to generate GDPs, 
for its anatomical characteristics, including extensive 
glutamatergic connections via recurrent collaterals, 
the CA3 area is particularly well equipped to generate 
synchronized oscillations and can be considered as 
the pacemaker region. In addition, the CA3 area of 
the hippocampus is able to initiate, upon membrane 
depolarization, intrinsic bursts which by virtue of 
their spontaneous discharges and large spike output 
can drive other neurons to fire (Sipila et al, 2005; 
Safiulina et al, 2008). Burst firing is facilitated by a 
persistent slow sodium current (Sipila et al, 2006) 
whose activation threshold can be easily reached 
by the depolarizing action of  synaptically released 
GABA and glutamate. In addition, the activation of 
extrasynaptic GABAA receptors by ambient GABA 
(accumulated in the extracellular space  by spillover 
from neighboring synapses or by release from 
non-conventional release sites), generates a tonic 
GABAA-mediated conductance that contributes to 
depolarize the neurons (bringing them to threshold 
for activating the persistent sodium current, Sipila et 
al, 2005), and to further enhance cell excitability and 
the glutamatergic drive to principal cells (Marchionni 
et al, 2007). Interestingly, intrinsic bursting activity 
is facilitated by the low expression, of Kv7.2 and 
Kv7.3 channels responsible for the non-inactivating, 
low-threshold M current (IM), which in adulthood 
controls spike after-depolarization and burst 
generation (Yue and Yaari, 2004). The low density of 
IM at birth contributes to produce intrinsic bursts that, 
in comparison to adults, are more robust, last longer 
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that during postnatal development MF constitutively 
express GAD67 and its product GABA (Schwarzer 
and Sperk, 1995; Sloviter et al, 1996) as well as 
the mRNA for the vesicular GABA transporter 
VGAT (Gomez-Lira et al, 2005). Post embedding 
immunogold double labelling have revealed the 
coexistence in MF terminals of VGAT with VGLUT 
(the vesicular transporters for GABA and glutamate 
respectively) further suggesting that GABA can be 
co-released with glutamate (Zander et al, 2010). 
Moreover, hippocampal pyramidal neurons are able 
to express not only glutamate but also “mistargeted” 
GABAA receptors which, in particular conditions 
may become functional (Rao et al, 2000). This 
suggests that MF can use GABA as a neurotransmitter 
since they posses all the machinery for synthesising, 
storing, releasing and sensing it.

Like adults, immature MF undergo activity-
dependent modification of synaptic efficacy. The 
immature brain is characterized by an elevated 
number of “silent” synapses (Durand et al, 1996; 
Gasparini et al, 2000). These are synapses that do not 
conduct at rest either because the neurotransmitter 
is not released when the presynaptic terminal is 
invaded by an action potential (presynaptically 
silent) or because they are unable to detect the 
release of the neurotransmitter due to the lack 
of the respective receptors on the subsynaptic 
membrane (postsynaptically silent). Conversion of 
silent synapses into active ones represents the most 
common mechanism for LTP induction (Voronin 
and Cherubini, 2004). Using a ‘‘pairing’’ procedure 
consisting in stimulating for a short period of 
time (5 min) mossy fibres with the rising phase of 
spontaneously occurring GDPs, in order to associate 
these events with the activation of afferent inputs, we 
were able to persistently enhance synaptic strength 
leading in some cases to synapses un-silencing 
(Kasyanov et al, 2004; Spitzer, 2004). In double pulse 
experiments, pairing-induced increase in successes 
rate was associated with a significant reduction 
in the paired-pulse ratio and a significant increase 
in the inverse squared value of the coefficient of 
variation. This suggests that an increased probability 
of transmitter release accounts for the persistent 
increase in synaptic efficacy. By introducing a delay 
between GDPs and afferent stimulation, synaptic 
responses progressively declined and regained the 

de la Prida et al, 2006). Preventing the activation 
of the GABAB conductance with the selective 
antagonist significantly prolong the duration of 
GDPs suggesting that GABA via these receptor types 
contribute to their termination (McLean et al, 1996; 
Fiorentino et al, 2009).

PERSISTENT INCREASE IN SYNAPTIC 
STRENGTH INDUCED BY PAIRING GDPs 

WITH MOSSY FIBER ACTIVATION

Mossy fibres (MF) are the axons of dentate gyrus 
granule cells. They convey information from the 
dentate gyrus to the CA3 area of the hippocampus 
proper. These fibres have been originally called 
“mossy” by Ramon y Cajal because of their 
particular appearance at the light microscopic level 
that reminds, as the mossy fibres in the cerebellum, 
the shape of the moss on trees (Ramon y Cajal, 1911). 
MF not only project to the CA3 area but they make 
synaptic contacts with basket cells in the dentate 
gyrus (providing the local recurrent inhibition) and 
with pyramidal-like neurons, the mossy cells, in the 
hilus (Johnston and Amaral, 2004). MF give rise to 
large en passant swellings (up to 5 mm in diameter) 
and terminal expansions on CA3 principal neurons 
or mossy cells seen as giant boutons at the electron 
microscopic level. These giant boutons develop 
gradually during the first 21 days (Amaral and 
Dent, 1981): at postnatal (P) day 3, immature axons 
terminate in very small, spherical expansions, which 
establish both symmetric and asymmetric contacts 
with pyramidal cell somata, apical dendrites and 
presumed growth cones. These contacts are made 
several days before the development of thorny 
excrescences (Stirling and Bliss, 1978; Amaral and 
Dent, 1981). Expansions markedly increase in size 
by day 9 while maintaining a relatively spherical 
shape. 

While in adults, MF are glutamatergic and 
integrate the classical tri-synaptic circuit, at birth, 
they release into CA3 principal cells and GABAergic 
interneurons GABA (Safiulina et al, 2006). In 
addition, in particular conditions (i.e. seizures). 
they can co-release glutamate and GABA (Gutierrez 
and Heinemann, 2001; Münster-Wandowsi et al, 
2013; but see Uchigashima et al, 2007; Cabezas et 
al, 2012; Caiati, 2013). Evidence has been provided 
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receptors localized on presynaptic neurons increases 
the probability of glutamate release (Mohajerani et 
al, 2007). BDNF may also act on postsynaptic TrkB 
receptors to activate the MAPK/ERK signalling 
pathway. Thus, the block of synaptic potentiation 
with ERK inhibitors present into the patch pipette 
validated this hypothesis (Mohajerani et al, 2007). 
Therefore, activation of postsynaptic TrkB receptors 
by BDNF would lead to transcriptional regulation 
and new protein synthesis required for the enduring 
forms of synaptic plasticity. 

CONCLUSIONS

It is clear from this review that, at early stages 
of postnatal development, genetically built neuronal 
networks are very plastic and undergo activity-
dependent changes in their synaptic efficacy, 
through adaptive processes that involve experience. 
Thus, during the first postnatal week, an associative 
type of learning is able to persistently enhances 
synaptic strength at both GABAergic MF-CA3 
and glutamatergic CA3-CA1 connections. This 
effect requires a transient rise of calcium in the 
postsynaptic cell. This will be ensured by GDPs-
associated calcium transients and the activation 
of voltage-dependent calcium channels following 
GABA-induced membrane depolarization. Hence, 
GDPs would exert an instructive role in shaping 
synaptic connections in the hippocampus during a 
critical period of postnatal development, a process 
that would lead to the structural refinement of 
synaptic connections and to the establishment of the 
adult neuronal circuit.
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During sharp wave/ripple (SWR) patterns large numbers of hippocampal cells fire action potentials 
together and, in parallel, CA1 neurons engage in transient 200Hz ripple oscillations. SWRs are initiated in 
the CA3 recurrent collateral system triggering the activation of CA1 neurons and further downstream it 
synchronises neurons in other brain regions. Emerging evidence has linked SWRs to learning and memory 
consolidation and recent work has demonstrated a role in planning and short-term memory as well. 

are observed during locomotor activity and rapid eye 
movement sleep. In the absence of theta oscillations, 
during slow wave sleep and waking immobility, field 
potentials are less regular - a state referred to as large 
irregular activity. During large irregular activity, 
intermittent negative waves (sharp waves) of 40-
120ms duration are observed in the CA1 stratum 
radiatum (Buzsaki, 1986). In conjunction with these 
sharp waves, 150-250Hz fast oscillatory patterns 
(ripples) are present in the CA1 region, (O’Keefe and 
Nadel, 1978; Suzuki and Smith, 1988; Buzsaki et al., 
1992). Such sharp wave/ripple patterns have been 
observed in inactive waking and slow wave sleep 
periods but they also occur during consummatory 
behaviour, grooming and in brief pauses in exploratory 
activity (Buzsaki et al., 1983; O’Neill et al., 2006). 
Although SWR patterns were originally observed in 
rodents (rats and mice), recent work has reported their 
existence in other mammalian species including bats, 
primates and humans (Skaggs et al., 2007; Ulanovsky 
and Moss, 2007; Le Van et al., 2008).

MECHANISM OF SWRs

During SWRs two interrelated processes 
take place: hippocampal CA1 and CA3 neurons 

Oscillations are omnipresent in the brain:  the 
activity of neurons is influenced by a wide variety of 
macroscopic network oscillatory patterns (Buzsaki 
and Draguhn, 2004). Although the most recognizable 
forms of network oscillations keep on for longer 
periods of time, over numerous oscillatory cycles 
[e.g. theta-band (4-10Hz) oscillations],  other types of 
oscillations occur as transient packets of oscillatory 
waves. Such transient oscillations synchronise 
neuronal populations as they phase lock to the same 
oscillations. Moreover, neurons tend also to increase 
transiently their firing rate during these intermittent 
oscillations. Possibly one of the best studied example of 
such transient network oscillatory patterns is the sharp 
wave/ripple  event that occurs in the hippocampus, 
usually during sleep and rest periods (Buzsaki et al., 
1983, 1992; Csicsvari et al., 1999).  This review will 
provide a concise overview about the mechanism and 
function of SWRs.  

DEFINITION OF SWRs

Early studies of rodents by Vanderwolf first 
identified that hippocampal field oscillations are 
governed by the behavioural state of the animal 
(Vanderwolf, 1969). Regular theta-band oscillations 
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levels of subcortical neuromodulation in each state. 
Acetylcholine has been suggested to have the strongest 
effect in controlling the emergence of SWRs because 
it suppresses excitatory neurotransmission through 
presynaptic muscarinic receptors (Hasselmo, 1999).  
Therefore, during waking periods, when cholinergic 
levels are high, the CA3 recurrent collateral system 
and CA3-CA1 Schaffer collaterals are suppressed, 
by which action SWRs are ultimately suppressed. 
Nevertheless sharp waves are not completely 
blocked because acetylcholine and other non-specific 
subcortical neurotransmitters that are present during 
active waking periods also make pyramidal cells more 
excitable by the action of postsynaptic receptors. This 
can compensate for the reduced effectiveness of the 
CA3 inputs (O’Neill et al., 2006). 

ROLE OF SWRs IN PLASTICITY

The frequency of ripple oscillations is similar to 
that used to induce LTP during tetanic stimulations. 
Therefore, it has been suggested that SWR may 
facilitate synaptic plasticity (Buzsaki, 1989). Such 
plastic changes have indeed been demonstrated by 
stimulating CA1 pyramidal cells during SWRs: it was 
shown that the SWR responses of cells are potentiated 
if these cells were stimulated during SWRs before 
(King et al., 1999). These experiments suggest that 
synaptically-connected CA3 and CA1 pyramidal cells 
that repeatedly fire together during SWRs potentiate 
their synapses. It has been shown before that dendritic 
spiking takes place during SWRs (Kamondi et al., 
1998). Moreover, highly synchronised input from 
CA3 cells during SWRs can evoke localised dendritic 
spikes on the apical dendrites of CA1 pyramidal cells. 
These dendritic spikes could potentially facilitate 
synaptic plasticity (Losonczy et al., 2008).

However, there have been opposite suggestions as 
well, proposing that SWRs may trigger LTD. Because 
SWRs tend to occur at low frequencies similar to 
LTD stimulation frequency, it has been proposed that 
SWR may have a role in reducing synaptic weights. 
Indeed in ventral hippocampal slices, in which SWR-
like activity can spontaneously occur, the potentiation 
following LTP induction gradually reduced (Colgin 
et al., 2004). Moreover, in dorsal hippocampal slices, 
where SWRs were not present, LTP was stable; 
however, stimulation following ventral SWR patterns 

transiently increase their firing rate and consequently 
many neurons fire action potentials together. At the 
same time CA1 neurons engage in a synchronised 
oscillatory activity leading to ripple oscillations in the 
CA1 region.  Data suggests that SWRs patterns are 
generated internally within the hippocampus, and are 
initiated in the CA3 region.  It was shown that SWRs 
remain in animals in which the entorhinal cortex (EC) 
is lesioned, demonstrating that SWRs can be generated 
in the absence of extrahippocampal input from the 
EC (Bragin et al., 1995). Moreover, fimbria fornix 
lesions demonstrated that subcortical inputs are also 
not necessary for SWR-generation, although in these 
conditions SWR events are of larger in amplitude, 
suggesting an overall repressive role for subcortical 
inputs (Buzsaki, 1986).  In knockout animals in which 
activity of CA3 neurons is largely suppressed sharp 
waves can be no longer seen although transient ripples 
oscillations can be still identified (Nakashiba et al., 
2009). 

Precise temporal analysis of the SWR-related 
firing of CA3 pyramidal cells revealed that many CA3 
pyramidal cells fire together during SWRs, and they 
start to fire earlier than CA1 pyramidal cells (Csicsvari 
et al., 2000).  Amongst CA3 cells, those proximal to 
CA1 (CA3a) start to fire first, 15ms earlier than CA1 
pyramidal cells while those proximal to the dentate 
gyrus (CA3c) fire last, preceding CA1 cells only 
by 5ms. In the dorsal hippocampus, CA3 recurrent 
connectivity is stronger in the CA3a-CA3b regions 
than in the CA3c region (Li et al., 1994; Witter and 
Moser, 2006). By contrast, the CA1 region receives 
far more projections from the CA3c region than from 
CA3a/b regions. Therefore, anatomical connectivity 
may explain why SWRs tend to initiate in CA3a/b 
regions and propagate first to the CA3c region and 
then to CA1. 

It is not fully understood how the SWR burst 
is initiated. It has been suggested that SWRs are 
triggered by initiator pyramidal cells in the CA3 
region that have strong connections with other CA3 
cells (Buzsaki et al., 1989;O’Neill et al., 2006). These 
initiator cells will recruit the first group of cells to fire 
during SWRs, which in turn will recruit an even larger 
group of cells. This process will lead to the build-up of 
SWRs as gradually more and more cells are recruited.  
However, build-up of such excitatory activity depends 
largely on the network state, because of the variable 
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The sequential firing patterns of place cells are also 
reactivated, primarily in cases when the animal 
follows stereotyped movement paths on tracks and 
simple mazes (Lee and Wilson, 2002). Importantly, 
it was confirmed that reactivation tends to occur 
during SWRs. In the case of reactivated patterns 
encoding places, it was shown that the increase 
in firing rates during SWRs is assembly-specific, 
enabling wider separation of cell assemblies encoding 
different locations, and thus a more precise coding of 
reactivated places (O’Neill et al., 2008). Reactivation 
of firing sequences tends to occur during SWRs as 
well (Lee and Wilson, 2002). Moreover, reactivation 
of sequences in neighbouring SWRs is interrelated: 
long movement paths tend to recur during consecutive 
SWRs (Davidson et al., 2009). 

There are two independent evidence linking SWRs 
in sleep to memory consolidation. 

Firstly, correlative evidence showed the frequency 
of reactivation of newly-learned reward locations 
predicts the future memory retention performance of 
the animals (Dupret et al., 2010). In this work animals 
were trained to learn the location of food rewards on 
a cheeseboard maze. Following learning, in sleep and 
immobile rest periods it was measured how frequently 
the learned reward locations were reactivation. It was 
shown that the frequency in which a given reward 
location was reactivated predicts the subsequent 
memory performance of the animal. Secondly, in order 
to demonstrate a causal link, studies were performed 
using SWR blockade to test role of SWR in learning 
and memory stabilization  (Girardeau et al., 2009; Ego-
Stengel and Wilson, 2010).  In these studies animals 
learned locations of rewards in complex mazes over 
several days. The blockade of SWRs following the 
learning trials delayed the speed of the animal to reach 
optimal memory performance to locate the rewards, 
although the impairment was mild.  However, it is 
possible that electrical stimulation during SWRs may 
itself cause alterations in synaptic strength, which 
could explain the learning deficits (King et al., 1999). 

SWRs DURING WAKING PERIODS

SWRs that occur during active waking periods 
may have different roles to those in sleep because 
neuronal activity in these SWRs can be influenced by 
ongoing sensory experiences. Initially, it was shown 

led to LTD. The idea that SWRs reduce synaptic 
weights is in agreement with the presumed role of 
sleep in down-scaling synapses that were excessively 
potentiated during waking activity (Tononi and Cirelli, 
2006).

Perhaps both of these effects may take place in 
parallel. Accordingly, SWR can cause the facilitation 
of synapses if both the post- and the presynaptic 
pyramidal cells fire frequently during SWRs while 
synaptic strengths will be reduced when these cells 
tend not to fire together during SWRs. Such a rule 
is similar to that which governs how the joint firing 
tendency of cells changes during reactivation due to 
waking firing patterns (O’Neill et al., 2008).

REACTIVATION OF WAKING EXPERIENCES 
DURING SWRs

It had been predicted early on that the waking 
activity patterns of neuronal assemblies may 
spontaneously recur in the hippocampus in offline 
periods when it is not processing external inputs (Marr, 
1971). It has been also suggested that such reactivation 
may have a role in memory consolidation: reactivated 
neuronal patterns might represent memory traces, 
which are transferred to extrahippocampal locations 
for consolidation (Buzsaki, 1989; McClelland et 
al., 1995). Finally, it has been put forward that such 
replay could take place during SWRs (Buzsaki, 1989). 
Strong network synchronization during SWRs has 
been proposed to facilitate the transfer of reactivated 
patterns to extrahippocampal locations where those 
might eventually be stored  (Buzsaki, 1989; Kudrimoti 
et al., 1999). Additionally, by facilitating synaptic 
plasticity, they may also strengthen downstream 
connections to extrahippocampal locations during 
reactivation (Buzsaki, 1996).

Electrophysiological recording confirmed many 
aspects of this theory. It was shown that waking activity 
patterns of hippocampal neurons do recur during sleep 
(Wilson and McNaughton, 1994). Moreover, place 
cells with similar place fields that fire frequently 
together during waking exploration also often fire 
together in subsequent sleep periods. This suggests 
that reactivation during sleep represents places that 
the animal visited before. Hence, it was put forward 
that place cells encoding similar locations form cell 
assemblies, whose joint activity is reinstated in sleep. 
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CONCLUSIONS
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The cognitive deficits that characterise Alzheimer’s disease (AD) are critically linked to progressive 
neurodegeneration and synaptic dysfunction in the brain. Previous research into key risk factors for the 
onset of AD focused heavily on abnormal protein aggregations and regulation of pathogenes. However, 
a gene-centric view of AD manifestation has generated limited translation into the understanding of 
pathophysiology, at least in relation to progressive decline of synaptic function. Evidence from a variety 
of experimental models demonstrates that aberrantly enhanced downscaling of synaptic transmission, 
of an LTD-like nature, is at the heart of AD pathology; driving AMPA receptor endocytosis and synapse 
elimination. Inhibition of LTD signals prevents neurotoxic effects from AD pathogens. Therefore, we 
highlight the importance of ‘Synaptic Biology’ in AD pathophysiology and discuss a new conceptual 
understanding of the roles of functional and synaptic structural plasticity in AD and its links to 
therapeutic intervention.

Alzheimer’s disease (AD) is the leading form 
of dementia, characterized in its late stages by 
significant neuronal death linked to plaques of 
amyloid-β and tangles of tau protein (Ballard et 
al, 2011). This devastating disease remains poorly 
understood and without an efficacious treatment 
strategy (Fig. 1). It is, however, increasingly evident 
that AD has its origins embedded at the synapse 
(Selkoe, 2002). Its prodromal phase, mild cognitive 
impairment (MCI), is strongly correlated with subtle 
but significant loss of synapses (Scheff et al, 2006; 
Scheff et al, 2007). This is consistent with the notion 
that synapses, and their innate plasticity, provide the 
major physiological basis of such cognitive functions 
as learning and memory (Silva, 2003).

Most established approaches to understanding 
AD aetiology have focused heavily on investigating 
genetic influences to disease incidence. Such 

approaches have revealed variation in APP, PS1, 
and APOE (among other genes) as key risk factors 
for early and late-onset AD respectively (Goate 
et al, 1991; Corder et al, 1993; Sherrington et al, 
1995), and the very latest GWAS studies have also 
pinpointed a number of other genetic loci with late-
onset AD association (Harold et al, 2009; Lambert 
et al, 2009; Naj et al, 2011; Hazrati et al, 2012). 
However, translating these findings into the fully 
elucidated biochemical pathways that drive AD 
pathogenesis, particularly with regard to synaptic 
dysfunction has proved difficult. How we can 
reconcile this established genetic data with what 
we know to underscore the cognitive decline of 
AD remains a fundamental challenge to a unified 
theory of AD pathogenesis. An emerging conceptual 
approach, aimed at delineating the synaptic origins 
of this disease, is driven from a synaptic point-of-
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view.  
In this regard, a growing body of evidence 

now supports the hypothesis that AD results from 
aberrant synaptic elimination that is similar to and/or 
associated with mechanisms of long-term depression 
in synaptic transmission (LTD). Concomitantly, 
long-term potentiation (LTP; an activity-dependent, 
sustained increase in synaptic strength) is impaired 
in both in vivo and ex vivo models of AD (Walsh et 
al, 2002; Shankar et al, 2008; Jo et al, 2011). These 
two processes of synaptic plasticity involve an array 
of molecular signalling pathways that ultimately lead 
to changes in the efficacy of synaptic transmission 
(Malenka and Bear, 2004; Collingridge et al, 2010). 
Here we present a hypothetical model describing 
how dysregulation of these pathways, specifically 
those driving LTD, critically contribute to synaptic 
deficits associated with AD. Central to this model 
is the aberrant internalization of synaptic AMPA 
receptors (AMPARs) and the consequent weakening 
and elimination of synapses.

Through a better understanding of fundamental 
synaptic biology we are better able to identify these 
processes that go awry in pathology. This synaptic 
approach to understanding AD has already provided 
a number of startling insights, most notably regarding 
apoptotic signalling pathways and the protein tau. 
Here, we provide a timely snapshot of the evidence 
garnered so far, and begin to tie together different 
strands of AD research within one conceptual 
framework.

AMYLOID-β AND WEAKENED SYNAPTIC 
CONNECTIVITY

Pioneering early work demonstrated that loss 
of cortical volume occurs progressively in AD and 
correlates with the severity of dementia (Braak and 
Braak, 1991). The majority of excitatory neuronal 
connections occur at protrusions from dendrites, 
known as spines. Herein lie the compartmentalized 
regions of postsynaptic signalling, and thus, a 
significant proportion of the computational power of 
the brain (Newpher and Ehlers, 2009). Of particular 
importance is the relationship between structure 
and function of dendritic spines, whereby changes 
in spine size and stability are critically linked to 
learning and memory processes (Kasai et al, 2003). 

Impaired memory performance may therefore be 
associated with loss of dendritic spines, which has 
long been documented in AD patients (DeKosky 
and Scheff, 1990; Terry et al, 1991) as well as 
in several transgenic mouse models of AD, such 
as the Tg2576 (Almeida et al, 2005; Spires et al, 
2005), PDAPP (Lanz et al, 2003) and APP/PS1 
(Moolman et al, 2004) mice. Understanding how 
these synaptic connections are lost in brains with 
elevated amyloid-β and/or other pathogens, and the 
mechanisms responsible, will give some new insights 
into fundamental components of AD pathology.

The levels of soluble oligomers of amyloid-β, 
in particular, correlate with severity of dementia 
and are believed to be directly responsible for the 
disruption of synaptic plasticity in vivo (Lue et al, 
1999; Klyubin et al, 2005). A number of groups 
have now shown that exposing neurons to these 
oligomers leads to a decrease in spine size, together 
with marked spine loss (Shrestha et al, 2006; Lacor 
et al, 2007; Calabrese et al, 2007; Shankar et al, 
2007; Wei et al, 2010; Wu et al, 2010). Interestingly, 
it is also well established that “physiological” 
activity-dependent LTD-inducing stimuli are able 
to promote the shrinkage and retraction of dendritic 
spines (Nagerl et al, 2004; Zhou et al, 2004). These 
facets of research together provide the first clues that 
neurotoxic species of amyloid-β, which drive AD 
pathology, may be acting at the synapse in a similar 
manner to physiological LTD inducing stimuli.

Of course, the dendritic phenocopies induced by 
LTD and amyloid-β only provide us with a limited 
understanding for the loss of neuronal connectivity 
in AD. A deeper understanding requires insights 
into the detailed molecular signalling pathways that 
underlie these effects.  For example, more direct 
evidence for this LTD homology comes from studies 
suggesting that spine loss induced by amyloid-β in 
these models is dependent upon NMDA receptors 
(NMDARs), followed by the rapid and localized 
activation of the enzyme calcineurin (Shankar et al, 
2007; Wu et al, 2010; Wu et al, 2012).  NMDARs and 
calcineurin are key components of LTD signalling 
that lead to the endocytosis of AMPARs (Morishita 
et al, 2005), underpinning the downscaling of 
synaptic transmission (Carroll et al, 1999). Efforts to 
understand AD-associated synaptic elimination have 
therefore been further directed at deciphering the 
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Fig. 1. Drug efficacy in mild to moderate Alzheimer’s disease treatment. Illustrated meta-analyis of 3 - 4 randomized 
placebo-controlled clinical trials (RCTs) for each drug in patients with mild to moderate AD (as determined by baseline 
Mini-Mental State Examination (MMSE) score of 14 - 24) with outcome measures calculated 3 - 6 months following 
beginning of treatment with drug or placebo. The outcome measures were the MMSE (30 point scale) and Alzheimer’s 
Disease Assessment cognitive subscale (ADAS-cog; 70 point scale). Baseline and endpoint means were plotted as a 
percentage score of their respective cognitive test, e.g. a mean score of 35 in the ADAS-cog test would be plotted as 50%.

Fig. 2. The Caspase-3-Akt1-GSK-3b (C-A-G) cascade drives LTD. a) The pro-apoptotic Bcl-2 proteins BAD and BAX are 
transiently activated by LTD-inducing stimuli, such that BAD translocates to the mitochondria, from which cytochrome c 
release is stimulated (Li et al, 2010, Jiao and Li, 2011).  This leads to the moderate and transient activation of caspase-3 
(Li et al, 2010). Caspase-3 causes the proteolysis of Akt1, thereby removing the tonic inhibition of GSK3b (Li et al, 2010). 
As GSK3b has an essential role in LTD induction (Peineau et al, 2007) , the removal of its tonic inhibition is likely to 
be a significant contributing event to the induction of LTD and AMPAR internalization. b) A number of other factors 
associated with LTD and/or AD pathology are known to interact with components of the C-A-G cascade, indicative of a 
convergence of common signalling pathways.  à indicates activating effect, -| indicates inhibitory effect. Abbreviations: 
DKK1; Dickkopf-related protein 1, Hsp-90; Heat shock protein 90, Jnk; Jun N-terminal kinase, PI3K; Phosphoinositide-
3-kinase; PKC; Protein kinase C, PP1; Protein phosphatase 1, PTEN; Phosphatase and tensin homolog.
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AMPAR endocytosis and LTD, a number of groups 
have shown a direct facilitatory effect of amyloid-β 
on post-synaptic electrophysiological responses 
to sub-threshold LTD inducing stimuli. Soluble 
amyloid-β from a variety of sources facilitates LTD 
in acute hippocampal slices, as well as in vivo (Kim 
et al, 2001; Hsieh et al, 2006; Shankar et al, 2008; 
Li et al, 2009; Cheng et al, 2009). Delving into the 
molecular mechanics underlying this effect, these 
studies have also consistently revealed NMDARs as 
the key mediators of this effect of amyloid-β upon 
LTD.  Specifically, an enhanced NR2B component 
of NMDAR transmission modulates Ca2+ influx 
and results in the downstream activation of the key 
LTD enzymes calcineurin and GSK-3β (Hsieh et al, 
2006; Li et al, 2009; Li et al, 2011). Of significant 
note is a recent study demonstrating that inhibition 
of calcineurin-driven AMPAR endocytosis prevents 
spine loss induced by oligomeric amyloid-b species 
(Zhao et al, 2010). This supports the notion that 
AMPAR endocytosis is a significant driving force 
for amyloid-b induced synaptic impairment. 

LTD AND TAU

Tau has been inextricably linked to the pathology 
of AD since the initial observations of neurofibrillary 
tangles containing hyperphosphorylated tau in 
AD postmortem brains (Goedert et al, 1988; 

regulation and dysregulation of AMPAR endocytosis 
in more detail.

AMPAR ENDOCYTOSIS: THE DRIVING 
FORCE

Several lines of evidence have now shown that 
amyloid-b causes AMPAR endocytosis and can 
facilitate LTD (Hsieh et al, 2006; Shankar et al, 
2008; Gu et al, 2009; Li et al, 2009). Overexpressing 
amyloid-β results in reduced surface AMPAR 
immunostaining and a reduced evoked AMPAR-
mediated current in organotypic neurons (Hsieh 
et al, 2006).  This is correlated with enhanced 
phosphorylation of the AMPAR GluA2 subunit at 
it’s serine 880 residue (Malenka and Bear 2004), 
thereby promoting the internalization of AMPARs 
via an enhanced GluA2 interaction with the PDZ-
containing protein, PICK1 (Kim et al, 2001; Hsieh 
et al, 2006; Alfonso et al, 2014). Indeed, mimicking 
phosphorylation at this residue is capable of 
recapitulating amyloid-β induced spine loss, while 
a specific AMPAR endocytic-resistant mutant is 
able to prevent this pathological effect (Hsieh et al, 
2006). Together, this supports the idea that amyloid-β 
aberrantly enhances internalization of AMPARs – a 
process intrinsic to LTD – and this, in turn, drives 
synaptic weakening and spine elimination.

Further substantiating the role of amyloid-b in 

Fig. 3. Induction of aberrant functional and structural LTD by amyloid-β. Oligomers of amyloid-b act at extra- and intra-
neuronal locations to induce aberrant functional and structural LTD. Here, from a physiological state (left) of constitutive 
receptor recycling from and to the synaptic membrane, amyloid-b induces aberrant LTD processes (centre), leading to 
eventual spine loss (right).
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NMDAR complex (Mondragon-Rodriguez et al, 
2012). Furthermore, phosphorylated tau is known 
to accumulate in post-synaptic compartments of AD 
brains (Tai et al, 2012) and amyloid-β can directly 
induce this effect in cell models (Frandemiche et al, 
2014). In the context of a recent study documenting 
the importance of tau phosphorylation events in LTD 
(Regan et al, 2015), we can now start to see how the 
hyperphosphorylation and synaptic localization of 
tau in AD may reflect a facilitation of LTD signalling 
that ultimately paves the way to a pathological state. 
In this scenario it will be important to ascertain 
whether the hyperphosphorylation of tau is simply 
a by-product of facilitated LTD, or whether it is a 
direct and critical step in mediating this.

AMYLOID-β, APOPTOTIC PATHWAYS AND 
LTD

Apoptotic signal cascades have long been 
implicated in cell death and the pathology of AD 
(Allen et al, 2001; Cho and Johnson, 2004). A 
distinct sequence of signalling events are associated 
with the induction of this intrinsic programmed cell 
death pathway, beginning with the action of Bcl-2 
family members at the mitochondria, the release of 
cytochrome c, the formation of the apoptosome and 
the subsequent recruitment and activation of various 
caspases (Li et al, 2010). Amyloid-b has been shown 
to induce and facilitate apoptosis in AD patients and 
transgenic mice, through a direct molecular link to 
the mitochondrial release of cytochrome c (Lustbader 
et al, 2004). Furthermore, AD postmortem brains 
have shown up-regulated caspase activation (Su 
et al, 2001;, Zhao et al, 2003), while amyloid-β 
leads to aberrant activation of caspases and other 
pro-apoptotic proteins, which is associated with 
the induction of axonal pruning, loss of synaptic 
proteins, and cell death (Chong et al, 2006; Nikolaev 
et al, 2009; Liu et al, 2010; Kudo et al, 2012). 

It has recently become apparent that caspases can 
also participate in non-apoptotic processes, namely 
synaptic plasticity (Lu et al, 2006; Li and Sheng, 
2012). Specifically, caspases have now been shown 
to have a vital role in NMDAR-LTD and AMPAR 
internalization via the Caspase-Akt-GSK3b (C-A-G) 
cascade, as depicted in Fig. 2a. Caspase-3 causes 
the proteolysis of Akt1, thereby removing the tonic 

Braak and Braak, 1991). Of note, the degree of 
hyperphosphorylated tau strongly correlates with 
both the degree of cognitive impairment and 
neuron loss (Braak and Braak, 1991; Gomez-Isla 
et al, 1997; Santacruz et al, 2005; Nelson et al, 
2012). Furthermore, animal and in vitro models of 
Alzheimer’s disease have revealed that the presence 
of tau is critical for the induction of amyloid-β 
toxicity (Rapoport et al, 2002; Roberson et al, 2007; 
Shipton et al 2011; Zempel et al, 2013). Yet despite 
the overt nature of tau pathology in AD, its precise 
mediatory roles in neuronal and synaptic decline are 
still unclear.

An axonal segregation is classically attributed 
to tau (Kosik and Finch, 1987), where it has a 
well-established role in binding and stabilizing 
microtubules (Weingarten et al, 1975; Drechsel et 
al, 1992). Its redistribution to the somatodendritic 
compartment is associated with the onset of tau 
hyperphosphorylation and the onset of synaptic 
loss. However, a number of findings from 
electron microscopy, subcellular fractionation, 
immunoprecipitation, and immunocytochemistry 
studies are revealing that a small percentage of tau 
resides within the postsynaptic compartment during 
basal physiological conditions (Hoover et al, 2010; 
Ittner et al, 2010; Mondragon-Rodriguez et al, 
2012; Tai et al, 2012; Liu and Gotz, 2013; Kimura 
et al, 2014). How such a small amount of tau can 
come to be located at the synapse remains to be 
determined, but emerging evidence now suggests 
that its localization here may have a critical impact 
upon synaptic function. 

In particular, a recent study shows that tau is a 
fundamental LTD protein (Kimura et al, 2014); LTD 
mediated by NMDARs (NMDAR-LTD) is unable 
to be induced in mice lacking endogenous tau, and 
in rat neurons transfected with tau-shRNA. The 
involvement of tau in LTD could therefore unravel 
a further mechanism whereby AD pathogenic 
contributors converge upon LTD and AMPAR 
endocytosis. It is not yet clear how tau might be 
involved in the signalling pathway leading from 
NMDAR activation to AMPAR endocytosis, 
although some clues may be taken from a recent 
study showing that NMDAR activation by NMDA 
or amyloid-β leads to tau phosphorylation and a 
reduction in the interaction of a tau/fyn/PSD95/
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fundamental utility as a physiological process. The 
importance of synaptic elimination here is in stark 
contrast to the detrimental effects of similar synaptic 
elimination during late life, which ultimately leads 
to failure of cognitive functions that characterize 
dementia (DeKosky and Scheff, 1990).  

LTD itself is also vital for encoding physiological 
phenomena, such as object recognition memory 
and spatial reversal learning (Cho et al, 2000; 
Griffiths et al, 2008; Dong et al, 2013; Goh and 
Manahan-Vaughan, 2013). What is the difference, 
therefore, between such physiological LTD and 
the pathological LTD underlying AD pathogenesis 
(Romberg et al, 2012)? It is likely that the nature 
of the functional and structural effects on synaptic 
function exerted by amyloid-b (outlined here and 
illustrated in Fig. 3) are chiefly responsible. Firstly, 
the synaptic effects of amyloid-b are persisting. In 
contrast to physiological LTD, where reductions in 
synaptic strength occur with physiological relevance 
in a (relatively) transient nature, elevated amyloid-b 
is persistent from an early stage of AD onset 
(Kemppainen et al, 2007).  The continuing presence 
of this LTD-driving entity will lead to functional 
and structural reductions in synaptic strength that 
are without physiological relevance and will persist 
themselves.  Eventually, towards the later stages 
of the disease, prolonged activation of caspases, 
one of many pathogenes, could trigger a switch 
from physiological to pathological LTD and thus 
neurodegeneration.

Further to this, we propose that the crucial 
differentiating factor between physiological 
and pathological LTD could lie in the specific 
mechanisms that bring about synaptic depression. 
Specifically, an aberrant NMDAR mediated form 
of LTD is driving AD pathogenesis, rather than 
‘LTD’ per se. This is consistent with the view that 
tonic, rather than phasic, activation of NMDARs 
is a key excitotoxic factor (Parsons et al, 2007). 
NMDAR-LTD is considered to be developmentally 
regulated; it is prominent during early development 
(Dudek and Bear, 1993) and likely contributes to the 
synaptic elimination observed during these stages. 
Following this phase of brain maturation, it appears 
that NMDAR-LTD is necessarily downregulated, 
perhaps due to a developmental switch from 
NR2B- to NR2A-subunit containing NMDARs 

inhibition of GSK3b (Li et al, 2010). As GSK3b 
activity has an essential role in LTD induction 
(Peineau et al, 2007), potentially through its tau 
kinase activity (Kimura et al, 2014; Regan et al, 
2015), the removal of its tonic inhibition is likely to 
be a significant contributing event to the induction of 
LTD and AMPAR internalization.  

The role of caspases in LTD and proapoptotic 
signal cascades could pertain to an important 
mechanism for amyloid-b induced neurotoxicity 
and/or aberrant synaptic plasticity.  A number of 
recent findings have now begun to shed light on this 
possibility. Strong evidence indicates that the C-A-G 
cascade plays a role in the amyloid-b inhibition of 
LTP, as interrupting the cascade can prevent this 
effect (Jo et al, 2011). LTP can also be readily induced 
in hippocampal slices prepared from both caspase-3 
and BAX knockout mice, even after exposure to 
amyloid-b (Jo et al, 2011, Olsen and Sheng, 2012). In 
vivo and ex vivo analyses of Tg2576 mice show that 
local up-regulation of caspase-3 activity in dendritic 
spines is associated with AMPAR internalization, 
enhanced LTD and spine loss; all of which are 
prevented by a caspase-3 inhibitor (D’Amelio et 
al, 2011). Together, these findings suggest that 
proapoptotic signalling molecules play a key role in 
amyloid-b induced synaptic dysfunction, and support 
the theory that aberrantly regulated LTD mediating 
molecules are central to this neurotoxic effect. Fig. 
2b illustrates the convergence of known LTD and 
AD-mediating molecules onto the C-A-G pathway, 
providing further support for this hypothesis.

FATE OF PHYSIOLOGICAL AND 
PATHOPHYSIOLOGICAL LTD

It is important to consider that synapse elimination 
and/or transient loss is not an entirely pathological 
phenomenon; it has an important physiological 
function during early neurodevelopment, whereby 
unnecessary synapses are pruned (Bear et al, 1987; 
Huttenlocher and Dabholkar, 1997; Hua and Smith, 
2004). Improper synaptic elimination during these 
early stages of the immature brain is thought to 
be responsible for the learning disorder Fragile X 
syndrome (Irwin et al, 2001; Pfeiffer et al, 2010), 
and may contribute more broadly to autism spectrum 
disorders (Penzes et al, 2011), highlighting its 
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perhaps ultimately lead to the identification of novel 
therapeutic strategies for the prevention and/or 
reversal of AD pathogenesis.
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In the attempt to understand memory mechanisms, 
a great number of experiments have been performed 
in the last decades, both in humans and animal 
models, but despite impressive progress in the field, 
much remains unclear [for a review, see (McGaugh, 
2000)]. Memory is a fundamental component of our 
cognitive system. From an evolutionary perspective, 
fitness-relevant information, such as the location of a 
nest, or the source of food or water, can be stored and 
retrieved whenever necessary.

Experiments on animals, as well as on humans, 
have both advantages and disadvantages. While 
animal models allow the implementation of invasive 
techniques and a mechanistic study of the neural 
basis for memory (e.g. through the use of transgenic 
lines, ablation or recording techniques), animals are 
only capable of performing simple tasks and usually 
need long training periods. In contrast, humans 
are not only capable of more complex behaviours, 
but can also give feedback and voluntarily evoke 
memories. However, despite all the advantages 
of experiments on humans, studying the human 
brain has several limitations that are difficult to 
overcome. On the one hand, while non-invasive 
techniques, such as functional magnetic resonance 

imaging (fMRI) and electroencephalography 
(EEG), are broadly used in studies with humans, it 
is impossible through the use of these techniques 
to tell apart the firing activity of individual neurons 
and to isolate the precise neural circuitry involved in 
different memory functions. Also, they have either 
low temporal or spatial resolution (Buzsaki et al, 
2012). On the other hand, due to obvious ethical 
reasons, invasive recording techniques cannot be 
used for studying brain activity at cellular level in 
humans, which would provide useful information 
for understanding the mechanisms of memory. A 
very rare exception is, however, provided by patients 
with drug-resistant epilepsy which are implanted 
with intracranial electrodes for clinical reasons. 
Temporal Lobe Epilepsy is one of the most common 
cases of intractable epilepsy (Engel et al, 2012) 
and given the great amount of evidence showing 
that this area of the brain is involved in declarative 
memory (Eichenbaum, 2004; Scoville and Milner, 
1957; Squire et al, 2004), patients undergoing 
surgical therapy provide researchers with a unique 
opportunity of performing experiments to record 
single cell activity in humans (Rey et al., 2014).

In this review, we describe and compare studies 
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another related character of the same movie. 
Taking all this information together, we can argue 

that these neurons fire to concepts and not to specific 
visual or sensory features. The fact that a cell 
might a) respond with a high degree of invariance 
to a specific stimulus, b) respond not only to visual 
stimuli but also to cartoons and to the written and 
spoken name of the stimulus, and c) respond to two 
or more associated stimuli, indicates that there is 
not only a recognition of the stimulus through the 
integration of information coming from different 
sensory modalities, but there is also an interpretation 
of the stimulus, deep enough to associate it to other 
individuals or objects.   

The description offered above resembles the 
hypothetical “grandmother cells” or “gnostic units” 
proposed independently by Jerry Lettvin and Jerzy 
Konorski in the late 60’s. This type of neuron is 
supposed to encode specific concepts, such as one’s 
grandmother. The existence of grandmother cells has 
been a matter of debate over the last decades (Bowers, 
2009; Gross, 2002; Quian Quiroga and Kreiman, 
2010; Quian Quiroga, 2013; Quian Quiroga, Fried, 
and Koch, 2013; Quian Quiroga, Kreiman, Koch, and 
Fried, 2008). The experiments in epileptic patients 
described here suggest, however, that these neurons 
are not grandmother cells. First of all, there cannot 
be only one single “grandmother cell” per concept 
(Quian Quiroga et al., 2008; Waydo, Kraskov, Quian 
Quirogaet al, 2006). If we assume that the number 
of neurons in the MTL is on the order of 109, it is 
extremely unlikely that we will find the one and only 
that responds to a concept. 

Clearly, there is not one neuron per concept, 
but could we have many neurons, each of them 
responding to one and only one concept? This 
question is difficult to answer from a methodological 
point of view. Even if we found that a neuron only 
responds to one stimulus, we could never be sure that 
the same cell will not respond to another stimulus 
that is not being shown. Furthermore, there are many 
examples of cells that responded to more than one 
stimulus (Quian Quiroga and Kreiman, 2010; Quian 
Quiroga et al., 2009; Quian Quiroga, 2012): in a 
following recording session, the neuron responding 
to Jennifer Aniston also responded to Lisa Kudrow, 
another actress from the TV series “Friends”; 
as mentioned before, the neuron firing to Luke 

both on humans and animal models aimed at 
understanding how we store and recall memories.

Concept cells in the human medial temporal lobe
Neurons in the human medial temporal lobe 

(MTL) were found to respond (i.e. increase their 
firing rate with respect to baseline) to a specific 
person, animal or building (Quian Quiroga, Reddy, 
Kreiman, Koch, and Fried, 2005). For example, 
a neuron in the left posterior hippocampus of a 
patient increased its firing rate every time a picture 
of the actress Jennifer Aniston was presented. For 
this reason, these neurons were initially known 
as “Jennifer Aniston neurons” or “concept cells”. 
Regardless of the background of the picture, the 
position of the actress, the clothes she was wearing, 
or any other low-level feature, the neuron fired 
every time the patient was shown a picture of 
her. 	 Another striking example comes from a 
neuron found in the right anterior hippocampus of a 
different patient. This unit responded to pictures of 
the actress Halle Berry. Furthermore, this same unit 
also responded to the written name of the actress and 
to a drawing of her. Interestingly, the neuron fired 
to pictures of Catwoman, a character interpreted by 
the actress, where her face was covered with a mask, 
though the patient knew it was Halle Berry.

On a different patient with electrodes implanted on 
the left anterior hippocampus, a neuron responded to 
pictures of the famous television host Oprah Winfrey 
and to her written and spoken name pronounced by 
a computer synthetized voice (Quian Quiroga et al, 
2009). This was defined as multimodal invariance. 
Mostly, neurons showing this triple invariance were 
recorded from the hippocampus and entorhinal 
cortex. Only a few neurons were found in amygdala, 
and none in the parahippocampal cortex. Given 
the fact that multiple sensory modalities converge 
to the MTL (Lavenex and Amaral, 2000; Squire 
et al., 2004), it seems reasonable that this area can 
integrate visual and auditory information. Finally, a 
unit in the entorhinal cortex responded to pictures of 
Luke Skywalker, a character from the famous movie 
Star Wars (Fig. 1). This neuron not only responded 
to pictures, but also to the written and spoken name 
of the character. Compared to the ones already 
described, the novelty of this example resides in the 
fact that the cell also responded to a picture of Yoda, 
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et al, 1990; Saveet al, 1998), while concept cells 
can get active by simply imagining or recalling the 
stimulus they respond to (G. Kreiman et al, 2000; 
Gelbard-Sagiv et al, 2008); (3) place cells encode 
new place fields within minutes, while concept cells 
can also encode recently acquired concepts (e.g. 
neurons responded to pictures of the researchers 
running the experiments, of which the patient had 
no previous knowledge (Quian Quiroga et al, 2009); 
(4) place cells’ firing patterns can be used to predict 
the animal’s location, just as we can decode what 
picture a patient is looking at by the activity pattern 
of single units (Quian Quiroga, Reddy, Koch, and 
Fried, 2007); (5) place cells have a non-topographic 
organization (O’Keefe, 1979), which means that 
neighbouring cells do not necessarily respond to 
nearby place fields; though this is difficult to prove 
for concept cells in the human MTL, we have reasons 
to believe this is the case, since after spike sorting, 
neurons recorded with the same electrode responded 
to disparate stimuli (Quian Quiroga et al, 2007; Rey 
et al, 2014)

Whereas for rodents, it is of vital importance to 
have a spatial representation of the environment, for 
humans, being a largely developed social species, it 
is critical to be able to rapidly recognize each other 
(Bentin et al, 1996; Navajas et al, 2013). Interestingly, 
in macaques—another social species—it has been 
reported the existence of well delimitated areas that 
respond exclusively to faces (Freiwald and Tsao, 
2010; Moeller et al, 2008). These cells are grouped 
in face patches: regions of cells distributed all over 
the Infero-temporal Cortex (IT). As concept cells in 
humans, but to a lower extent, some of them respond 
to faces in an invariant manner and are individual-
specific. It could be argued that, up to now, face 
cells and place cells are the closest to an animal 
counterpart of the concept cells in humans. 

Neural activity controlled by optogenetics
In the last decade, one of the most exciting 

developments in Neuroscience has been the 
introduction of Optogenetics (Lima and Miesenböck, 
2005). This technique uses light to excite or inhibit 
neuronal activity (Deisseroth, 2011). It is based on a 
series of proteins called opsines, which are gated cation 
channels sensitive to light. These opsins can either 
produce optogenetic excitation (Channelrhodopsin) 

Skywalker also responded to Yoda; and the neuron 
responding to the Tower of Pisa also fired to the Eiffel 
Tower. However, in all the three examples, one could 
argue that all the stimuli a neuron responded to were 
related to each other, so the neuron was responding 
to associated concepts.

 Role of concept cells in memory formation
Given the fact that concept cells are located 

in areas that are known to be involved in memory 
formation, it has been argued that concept cells 
constitute the building blocks of memory – i.e. 
the conceptual representation that allows rapidly 
forming new associations (Quian Quiroga, 2012). 
But there is a limit to the amount of information 
we can store. In everyday life, we are exposed to 
a massive amount of information that we cannot 
remember. We tend to remember what is relevant to 
us, so it is not surprising that concept cells tend to 
fire to persons, objects or places that were familiar 
or somehow important to the patients (Viskontas et 
al, 2009). Concept cells then provide an explicit and 
abstract representation of a concept, highlighting the 
most important features of that concept in order to 
store it in high level memory related areas. 

Findings in rodents and non-human primates
As mentioned above, experiments in animals give 

us the opportunity to dig much deeper into the neural 
basis of memory. Not only we can use invasive 
techniques to record specific neural circuits, but we 
can also control what, when and from where we want 
to measure.  

An important finding in the rodent hippocampus 
was made by O’Keefe and Dostrovsky in the 1970s 
(O’Keefe and Dostrovsky, 1971), who found cells 
in CA1 (one of the subregions of the hippocampus) 
that increased their firing every time the animal was 
in a specific location (i.e. the “place field”). These 
cells share a few characteristics with the concept 
cells described above (Quian Quiroga, 2012): (1) 
the so-called place cells, as concept cells, are very 
selective in their firing, since they only fire when 
the animal is crossing the place field (Wilson and 
Mcnaughton, 1993); (2) they are independent 
of direct visual input: the absence of light or the 
removal of some visual cues does not change their 
firing pattern, as long as the location is clear (Quirk 
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inhibits transcription (and thus expression) of the 
genes downstream the c-fos promoter (ChR2 in this 
case). When expression wants to be avoided, the 
animals are fed with Dox, but as soon as the animal 
goes back to a normal diet (without Dox) the gene is 
expressed normally. 

Taking all this together, only neurons that are 
active while the animal is not fed with Dox express 
ChR2.

Creation of a false memory
Knowing that the Dentate Gyrus plays an 

important role in contextual memory (McHugh 
et al, 2007), Liu and colleagues injected a virus 
containing the ChR2 sequence targeting this area 
of the hippocampus (Liu et al., 2012) along with 
the implantation of an optic fibre (Fig. 2a). Mice 
were first exposed to a context (Context A) while 
receiving food with Dox (Fig. 2c). After this, they 
were exposed to a second context (Context B) where 
they received foot shocks, all this while on a Dox 
free diet, allowing the ChR2 gene to be expressed. 
Then, while back on Dox, the animals were tested 
in Context A with light-on and light-off periods. 
As expected, the freezing levels in Context A were 
much higher during the light-on epochs, due to the 
re-activation of the cells encoding the fear memory 
(Fig. 2d).  The authors of this work concluded that 
a small subpopulation of DG cells is recruited for 
forming a contextual memory engram, and that the 
activation of this subpopulation is sufficient to re-
activate that memory and also to associate it with a 
new fear memory.

After these results, a second question arose: Can 
fear behaviour be induced by the re-activation of an 
engram encoding a context, while fear conditioning 
happens in a different context (Ramirez et al, 
2013)? For this, mice were exposed to a context 
(Context A) while off Dox, to allow labelling of the 
subpopulation of cells encoding that context with 
ChR2. Next, animals were fear conditioned in a new 
context (Context B) while cells labelled where being 
activated by light. Then, the animals were tested 
either in Context A or in a novel context (Context 
C). When re-exposed to Context A, mice froze at 
significant levels, while exposure to Context C had 
no effect. 

Interestingly, the same result was found when 

or inhibition (Halorhodopsin), depending on the 
ion they are specific for. These proteins are usually 
activated by light of different wavelengths, which 
allows their simultaneous use with no interference. 
Currently, Channelrhodopsine-2 (ChR2) (Nagel et al, 
2003) is the most widely used opsine for optogenetics 
(Cardin et al., 2009; Kohara et al., 2013; Kohl et 
al., 2011; Sato et al, 2013). When ChR2 is exposed 
to light of the appropriate wavelength, part of the 
protein suffers a conformational change which in the 
end makes the cation channel open, allowing mainly 
Na+ ions influx (Nagel et al., 2003). Normally, to 
stimulate with light in vivo, animals are implanted 
with an optic fibre that delivers light, although for 
stimulating superficial cells, light can be delivered 
through the thinned skull (Cardin et al., 2010).

Studying memory mechanisms in animal models
Using a clever design, Liu and colleagues 

managed to create a false memory in mice (Liu et al., 
2012). In order to do this, they genetically marked 
neurons that were active during a specific behaviour. 
Following the hypothesis that a sparse population of 
neurons encode a memory (Hübener and Bonhoeffer, 
2010), they asked what would happen if they 
could re-activate the network encoding a memory 
(recalling) when it should not be active. 	However, 
they first had to deal with a technical problem: if the 
population of cells encoding a memory is sparse, 
how would it be possible to only activate those cells 
that are not necessarily close to each other and not 
others that are not related to the memory that wants 
to be recalled?

The solution was to condition the expression of 
ChR2 to the activation of the c-fos promoter (Fig. 
2a and b), a gene normally expressed, among other 
situations, when a neuron is active (Dragunow and 
Faull, 1989; Sheng et al, 1993). This gene was 
proved to be essential for memory formation (He et 
al, 2001; Tischmeyer and Grimm, 1999). Given that 
the expression of a gene is subject to the activation 
of its promoter and that c-fos promoter is activated 
when the neuron is active, then ChR2 will only be 
expressed in neurons during activity periods (for a 
complete description of the system, see (Liu et al., 
2012; Mayford, 2013; Reijmers et al, 2007). 

A key feature of this design is that it can be turned 
on and off reversibly. The drug Doxycycline (Dox) 
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changed, erased, or reconsolidated (Inda et al, 2011; 
Sara, 2000). In this case, as we mentioned before, 
we cannot get any feedback from the animals but 
the fact that the animals freeze when exposed to a 
context that was in principle not related to the context 
where they received the foot-shocks, indicate the 
possibility that re-activation of the cells encoding 
Context A while they are in Context B may make 
them “believe” that they are actually in Context A. 
The re-activation of these cells makes the memory 
they encode labile (Nader et al, 2000; Roediger et 
al, 2007), which allows a “modification” of that 
memory which now associates it with a high-valence 
memory: A fear memory.

What can we learn from both experimental models?
As described above, there are neurons in the 

human MTL that respond to specific stimuli in 
an invariant manner. It is believed that a group of 
neurons encode a memory of a concept. Similarly, in 
the DG of the mouse hippocampus, groups of cells 
respond selectively to a context, encoding a memory 
for that context. The experiments on animals we 

animals were exposed first to Context A (off Dox), 
then to Context C (on Dox) and finally to Context 
B, where they were fear conditioned. Memory 
engrams for contexts A and C are formed before the 
fear memory. However, one is labelled (and thus can 
be reactivated with light) and the other one is not. 
So, when the animals are being fear conditioned, 
only the subpopulation encoding Context A is being 
activated. This is why the mice associated Context 
A, and not Context C, with the aversive stimulus, 
thus indicating that subpopulations of cells encoding 
a context memory might be selective for only one 
context.

These experiments showed that it is possible 
to generate an association between two different 
events simply by simultaneously activating the two 
subpopulations of neurons encoding the memory for 
each event. 

Retrieving a memory is equal to making that 
memory labile (Nader et al, 2000). In some way, 
when we evoke a memory and re-activate the 
neurons encoding that memory, we are making the 
memory susceptible, and finally that memory can be 

Fig. 1. Example of a unit recorded from the entorhinal cortex that shows a spiking response to pictures of a Star Wars 
character, Luke Skywalker. The unit also responded to his written name (stimulus 58) and to his name pronounced by a 
computer synthetized voice (male voice: stimulus 71; female voice: stimulus 72). There was also a significant response to 
Yoda (stimulus 63), another character of the movie. For each stimulus, raster plots and post-stimulus time histograms are 
shown. Dashed lines indicate the onset of the stimulus.  
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humans, and that there is currently no methodology 
available that could allow these kinds of experiments 
in humans, the development of an animal model to 
study concept cells would help to understand how 
concepts are encoded and how this mechanism 
serves to declarative memory formation. 	 An 
animal model would indeed allow the field to further 
advance in the study of memory formation through 
abstract concept representation. It would provide 
data from experiments that could involve lesions, 
the use of drugs and cutting-edge technology that 
would lead us to a better understanding of how we 
represent abstract concepts in our brains. Studying 
this matter in animals would also allow the use of 
calcium imaging and optogenetics, which let us 
study the behaviour of large populations of neurons 
engaged in a task and manipulate their activity in 
order to understand the behavioural consequences. 

The combination of animal research with state-
of-the-art technology would surely help answering 
many open questions, such as how many neurons 
encode a concept, how many concepts are encoded 
by the same neurons, how the engrams are formed, 
what would happen if a neuron encoding a concept 
was artificially activated without any cue evoking 
the memory of the concept, and vice versa (i.e., if a 
neuron encoding a concept was selectively inhibited 
when it should be active), etc. With the precedents 
set by the experiments on mice described above, 
we think optogenetics and two-photon imaging are 
very valuable techniques for understanding memory 
formation. We are confident that in the same way 
as an engram encoding a context or a fear memory 
could be artificially re-activated without any natural 
cue, it should be possible to manipulate the activity 
of an engram encoding a concept.

CONCLUSION

In this work we have first described the 
advantages and disadvantages of experimentation 
on animals and humans, and secondly we reviewed 
the line of research undertaken with both species 
in order to understand the cellular mechanisms of 
memory formation. The experiments on humans 
reviewed here provide an insight on how we store 
our memories, through remembering representations 
of concepts and forming associations. The 

described here show an interesting approach for 
stimulating a group of neurons that are functionally 
connected (i.e., encoding the same memory). As 
already mentioned, experiments with animals allow 
a series of manipulations that cannot be implemented 
in humans.  Given the great similarities among the 
mechanisms of memory formation in animals and in 

Fig. 2. a) Injection of AAV9-TRE-ChR2-EYFP and 
implantation of the optical fibre in the DG of c-fos-tTA 
mice. b) During training (Off Dox), activity of certain 
neurons (in yellow) induces the expression of tTA, which 
through the interaction with TRE, drives CHR2-EYFP 
expression. c) Mice were habituated during 5 days in 
Context A with light stimulation and with a Dox-containing 
diet. Then, after consuming a Dox-free diet for two days, 
they were fear conditioned in Context B.  During the next 
5 days, while back on Dox, mice were tested in Context 
A with light stimulation.  d)  Mice show increased levels 
of freezing only during light-on periods after being fear 
conditioned (red curve), but not during habituation (blue 
curve). Adapted with permission from (Liu et al., 2012).
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the macaque face-processing system. Science, 330(6005), 
845-851. 

Gelbard-Sagiv, H., Mukamel, R., Harel, M., Malach, 
R., and Fried, I. (2008). Internally generated reactivation 
of single neurons in human hippocampus during free 
recall. Science, 322(5898), 96-101. 

Gross, C. G. (2002). Genealogy of the “grandmother 
cell”. Neuroscientist,  8(5), 512-518. 

He, J., Yamada, K., and Nabeshima, T. (2001). 
A role of fos expression in the CA3 region of the 
hippocampus in spatial memory formation in rats. 
Neuropsychopharmacology, 26(2):259-68

Hübener, M., and Bonhoeffer, T. (2010). Searching for 
engrams. Neuron, 67(3), 363-371. 

Inda, M. C., Muravieva, E. V., and Alberini, C. 
M. (2011). Memory retrieval and the passage of time: 
From reconsolidation and strengthening to extinction. J 
Neurosci, 31(5), 1635-1643. 

Kohara, K., Pignatelli, M., Rivest, A. J., Jung, H., 
Kitamura, T., Suh, J., et al. (2013). Cell type-specific 
genetic and optogenetic tools reveal hippocampal CA2 
circuits. Nat Neurosci, 17(2):269-79

Kohl, M. M., Shipton, O. A., Deacon, R. M., 
Rawlins, J. N. P., Deisseroth, K., and Paulsen, O. (2011). 
Hemisphere-specific optogenetic stimulation reveals left-
right asymmetry of hippocampal plasticity. Nat Neurosci, 
14(11), 1413-1415. 

Kreiman, G., Koch, C., and Fried, I. (2000). Imagery 
neurons in the human brain. Nature, 408(6810), 357-361. 

Lavenex, P., and Amaral, D. G. (2000). Hippocampal 
neocortical interaction: A hierarchy of associativity. 
Hippocampus, 10(4), 420-430. 

Lima, S. Q., and Miesenböck, G. (2005). Remote 
control of behavior through genetically targeted 
photostimulation of neurons. Cell, 121(1), 141-152. 

Liu, X., Ramirez, S., Pang, P. T., Puryear, C. B., 
Govindarajan, A., Deisseroth, K., et al. (2012). Optogenetic 
stimulation of a hippocampal engram activates fear 
memory recall. Nature, 484(7394), 381-385. 

Mayford, M. (2013). The search for a hippocampal 
engram. Philos Trans R Soc Lond B, Biol Sci, 369(1633), 
20130161. 

McGaugh, J. L. (2000). Neuroscience - memory - a 
century of consolidation. Science, 287(5451), 248-251. 

experiments on animals show how it is possible to 
evoke a memory through the activation of solely the 
cells that are involved in the engram encoding it and 
how the recalling of the memory can make it labile, 
susceptible to changes and new associations. 	
We argue that a combination of studies of the human 
brain at a single cell level with an animal model of 
concept representation in the hippocampus will help 
unravelling the remaining mysteries of memory 
formation.
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The neural encoding of new episodic memories, or consciously recallable and autobiographical 
associations, has been studied at length from the vantage point of hippocampal mechanisms and is 
conclusively established to require structures of the medial temporal lobe. Over time, this information is 
thought to undergo a process of exchange within anatomically distributed networks of neocortical 
connections, which theoretically bind individual experiences to more general frameworks of knowledge. 
Biological models of long-term memory have traditionally cast the cortico-hippocampal relationship 
as a complementary dynamic, involving two distinct systems, each tasked with a temporally separate 
phase of the consolidation process. Counter to this idea, however, a growing body of experimental work 
suggests that both cortical and subcortical systems are concurrently involved in memory across time, 
and that the machinery of memory systems is less anatomically modular than once thought. This 
review begins with a brief overview of cellular and molecular mechanisms implicated in associative 
learning, juxtaposing these ideas with more abstract principles from studies of systems memory 
consolidation. The discussion focuses on the potential for new technologies to unify conclusions 
from different levels of analysis, highlighting results from circuit-oriented genetic and optogenetic 
investigations. These findings draw attention to the need for future work aimed at dissecting small-
scale circuit properties that shape large-scale network interactions.
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Every day, from infancy until death, we are 
faced with tasks that require us to recognize and 
distinguish relevant cues embedded within noisy 
streams of sensory information. These behaviors 
are not unbiased reactions to isolated events; rather, 
they are strongly shaped by our existing internal 
representations of prior experience (Mishkin 1982; 
Goldman-Rakic 1988; Froemke et al 2007). The 
progressive modification or plasticity of neural 
circuits stimulated by external cues is thought 
to provide a critical mechanism for tuning 
connections that mediate perceptions and memories 
involved in behavior.  These circuit refinements 
are not only essential for maintaining a narrative 
of individual history, but are also necessary for 

predicting events to come (Morris 2006; Wang et 
al 2010; Takeuchi et al 2014).

The neurobiological mechanisms implicated in 
the encoding of episodic memories, the subtype 
of declarative memory encompassing consciously 
accessible cue-induced associations, have been 
extensively characterized in both human cases 
and animal models (Squire 1986; Nadel 1992; 
Eichenbaum 2000; Moscovitch et al 2005; Smith et al 
2006; Shrager et al 2007; Katche et al 2013a). While 
the formation of new episodic associations has been 
definitively established to require the hippocampus 
(HPC), abundant evidence also indicates that over 
time, neocortical circuits become preferentially 
engaged in memory storage and progressively less 
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drives a spike in voltage, triggering calcium entry 
via N-methyl-D-aspartate (NMDA) receptors 
and voltage-gated Ca2+ channels. The resulting 
activation of kinase signaling cascades, in turn, 
gate the expression of plasticity-related genes 
(Martin et al 2000; Silva et al 200; Johansen et al 
2011; Redondo et al 2011; Santini et al 2014). The 
expression of new proteins then leads to shifts in 
receptor density, synaptic structure, and intrinsic 
excitability, which are necessary for behavior and 
may shift the odds of future learning. For example, 
studies have found that cells overexpressing the 
active transcription factor, CREB, are more likely 
to participate in memory (Han et al 2007; Rogerson 
et al  2014; Yiu et al 2014). Thus, even specific 
associative events are inevitably shaped by past 
experiences and biases of the underlying circuit.

SYSTEMS CONSOLIDATION AND THE 
ANATOMICAL DEBATE

While the physiological and cellular events 
required for associative learning have been 
extensively characterized in hippocampal synapses, 
the concrete molecular basis for long-term memory 
storage is far less mechanistically defined. Data from 
behavioral and neurophysiological experiments 
suggest, however, that this process of systems 
memory consolidation (SMC) depends on the 
gradual transfer of information from hippocampal 
to cortical circuits, which are thought to ultimately 
organize, update, and maintain the content of past 
association.

Both human cases and animal models have 
established the importance of the HPC and 
surrounding medial temporal lobe (MTL) cortices 
in episodic memory (Squire 1986; Alvarez et al 
1994). These areas have unique structural and 
physiological properties that are well suited to 
accommodate both pattern completion from partial 
information and pattern separation from overlapping 
features (Leutgeb et al 2005a; Leutgeb et al 2005b; 
Leutgeb et al 2007; McHugh et al 2007).

By all accounts, the most famous longitudinally 
documented human case of severe episodic memory 
impairment was the epileptic patient, H.M., whose 
treatment by surgical resection of the retrograde 
amnesia, preventing his consolidation of new 

dependent on hippocampal structures (Squire 1986; 
Teng et al 1999; Bayley et al 2003). 

Several discrete neocortical divisions, including 
multiple sub-regions of the prefrontal cortex 
(PFC) and retrosplenial cortex (RSC), have been 
consistently implicated in the long-term process of 
systems memory consolidation, which theoretically 
integrates or “schematizes” individual traces 
within a stable framework of knowledge. Although 
traditionally viewed as a slow time- intensive 
process, recent experimental studies suggest that 
cortical circuits are meaningfully activated by 
learning related activity, and that both areas retain 
concurrent involvement in memory storage over time 
(Maviel et al Cowansage et al 2014; Tanaka et al 
2014; Goshen et al 2011). These recent insights, 
in conjunction with more temporally and spatially 
precise genetic, optogenetic and imaging tools, 
lay the foundation for more detailed mechanistic 
analyses of complex anatomical systems. 

The goal of this review is to first, provide 
a brief survey of what is known about cellular and 
anatomical mechanisms implicated in associative 
memory, second, to discuss recent strides toward 
unifying the relationship between circuits and 
anatomy, and third to highlight certain unanswered 
questions that will need to be more  fu l ly  addressed 
in order to understand how circuits, structures, and 
systems integrate to support the lifelong persistence 
of long-term associative memory.

CELLULAR MECHANISMS OF CUE 
ASSOCIATIONS

The dominant theoretical model for cellular 
plasticity in hippocampal networks is based on the 
Hebbian principle that co-activation of two sensory 
inputs to a common target produces network activity 
sufficient to strengthen associated connections (He 
bb 1949; Kandel et al 1968; Kohonen 1972; Kelso 
et al 1986; Caporale et al 2008). For example, in 
classic Pavlovian learning, a mouse given a painful 
shock, while exploring a neutral spatial environment 
will rapidly learn to associate the aversive cue 
with the specific space (Martin et al 2000; Maren 
2001; Kim et al 2013; Kandel et al, 2004). At 
the level of synaptic connections, memory encoding 
is believed to begin when external stimulation 
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Two major cortical areas have been particularly 
implicated in the cellular storage of episodic 
memory: 1) anterior cingulate cortex (ACC), as well 
as, more generally, the PFC, and 2) RSC (Aggleton 
2010; Hales and Brewer, 2010; Descalzi et al 2012; 
Smith et al 2012; Katche et al 2013b; Bucci and 
Robinson 2014). These regions are critically involved 
in spatial, sensory and emotional processing, and 
are connected to numerous sensory and subcortical 
areas by dense reciprocal connections. (Frankland 
and Bontempi 2005; Ding et al 2008; Keene and 
Bucci 2008; Robinson et al 2011).

GENETIC TRACKING AND MANIPULATION 
OF ACTIVE CIRCUITS

Despite converging lines of evidence supporting 
the importance of both the HPC and cortex 
in memory, cortical memory remains poorly 
understood at the circuit level, likely because 
of the paucity of available tools for selectively 
targeting relevant cell assemblies. To begin to begin 
to investigate the dynamics of cortical plasticity, 
several novel molecular, genetic and optogenetic 
tools have been implemented to directly visualize 
and functionally manipulate behaviorally activated 
circuits. These technologies make use of IEG 
expression profiles that are known to correlate with 
learning-related activity (Milanovic et al 1998; 
Radulovic et al 1998) and can be used to genetically 
report natural patterns of neural excitation (Barth 
et al 2004). Moreover, the cellular expression of 
IEG mRNA after exposure to a known environment 
has been observed to selectively increase within 
cells previously activated by the same context 
(Guzowski et al 1999; Guzowski et al 2005). Thus, 
beyond generally correlating with activity, the 
cellular localization of IEG mRNA expression 
within stable ensembles can be used to isolate and 
characterize neural ensemble linked to individual 
epochs of experience.

More recently, c-fos IEG promoter activity has 
been incorporated into a mouse transgenic system, 
developed in the laboratory of Mark Mayford, to 
enable to activity-based “tagging” of active neurons 
with any target gene of interest. Since this system 
can be fully suppressed by the drug, doxycycline 
(dox), the genetic labeling can also be limited 

associations (Scoville et al 1957). Interestingly, 
studies of H.M. and related cases revealed that, 
relative to the time of damage, distant episodic 
memories remained intact, while recently acquired 
memories were lost (Teng and Squire 1999). These, 
along with many subsequent reports, supported 
the notion that episodic information undergoes a 
gradual transfer into cortical networks, where it 
is stored persistently and eventually supplants the 
hippocampus (McClelland et al 1995; Bayley et al 
2003; Maviel et al 2004; Wiltgen et al 2004; Restivo 
et al 2009; Lopez et al 2012; Tayler et al 2013). 
Support for the idea of a time-dependent process for 
SMC was bolstered by primate and rodent studies 
showing that loss of HPC-function caused memory 
impairments at recent but not remote post-training 
time-points (Zola-Morgan and Squire 1990; Kim 
& Fanselow 1992; Anagnostaras et al 1999). More 
recently, studies in rodent models have shown that 
expression of immediate early genes (IEG), robust 
molecular markers of cellular activity, increase in the 
HPC after recent memory recall (Wiltgen et al 2010) 
and in the cortex after remote recall (Frankland et al 
2004; Frankland and Bontempi 2005; Frankland et al 
2006; Ding et al 2008).

From a physiological perspective, cortical 
consolidation is likely to involve a process of 
“replay,” or rapid sequential recapitulations of past 
stimulus-driven activity. This coherent retrieval- 
or internally-driven mirroring of past experience 
has been observed in both hippocampal and 
cortical networks and occurs during both sleeping 
and waking states, suggesting that this activity 
may provide a critical driving mechanism for 
reinforcing and maintaining the efficacy of relevant 
connections over time (Hoffman and McNaughton 
2002; Kali and Dayan 2004; Karlsson and Frank 
2009; Dragoi and Tonegawa 2011; Bermudez 
Contreras et al 2013; Suh et al 2013). In addition, 
resulting patterns of coincidental overlap between 
multiple simultaneously reactivated circuits, could 
theoretically provide a Hebbian-like mechanism 
for strengthening inter-association linkages between 
memories formed at different times. In this way, 
structural convergences among otherwise unrelated 
traces could permit new connections to form between 
existing representations, even long   after  learning 
occurs.
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et al 2011;  Einarsson  and  Nader  2012;  Tayler   
et  al 2013). Moreover, a complementary finding 
from the laboratory of Brian Wiltgen showed that 
optogenetic silencing of learning-tagged HPC 
neurons during tests of memory retrieval not 
only impaired behavior recall, but also blocked 
cellular reactivation of the learning-activated RSC 
neurons, suggesting that early synaptic potentiation 
of a cortico-hippocampal trace may coincide with 
learning, establishing a critical circuit for future 
reinforcement during replay or retrieval (Tayler et al 
2013; Tanaka et al 2014)). These findings are also 
consistent with an earlier report by Lesburgueres 
et al (2011) that neocortical ensembles are rapidly 
recruited during learning and become necessary for 
behavior at later time-points.

CORTICAL SCHEMAS

While rapid, coincidence-dependent Hebbian 
plasticity has been clearly implicated in the cellular 
basis for memories of individual “vignettes,” this 
theory is more challenging to apply to understanding 
how large multi-memory associations give rise to 
a unified and consciously accessible “memoire” 
of all life history. These so-called schemas are 
thought to develop over time, and represent complex 
aggregations of many types of acquired knowledge, 
interconnected as a stable and generalizable network 
(Eichenbaum 2000; Preston et al 2013). Interestingly, 
behavioral results from the laboratory of Richard 
Morris suggest that once established, cortical 
schemas are rapidly incorporate new episodic 
elements without the typical need for hippocampal 
involvement. Thus, rats trained in the principles of 
a complex HPC-dependent task could more rapidly 
acquire new associations linked to the same task, 
even when the HPC was offline (Tse et al 2007), 
and showed increased levels of neocortical IEG 
induction (Tse et al 2011; Wang et al 2012). Schemas 
may therefore be defined as large multi- association 
networks, which linking temporally separate events 
together on the basis of conceptual relatedness. 
Such a system ostensibly permits animals to make 
predictions and inferences based on more general 
past experiences, when explicitly recognized cues 
are unavailable.

to a specific temporal window, enabling cellular 
activity triggered by two distinct epochs of activity 
(i.e. learning versus recall) to be visualized in the 
same subject (Reijmers et al 2007). Several other 
inducible IEG-regulated genetic systems have since 
been validated for use in activity mapping studies 
(Vousden et al 2014; Guenthner et al 2013; Denny 
et al 2014). These IEG-based activity tagging 
systems permit unprecedented brain-wide access 
to specific ensembles activated at any anatomical 
site of interest during a given episode of activity. 
As a result, these tools provide an ideal strategy 
for investigating the direct relevance of specific 
anatomical circuits for behavior. This idea has now 
been tested in several studies, which used c-fos- 
driven optogenetic and pharmacogenetic tagging 
systems to artificially manipulate and reactivate 
tagged cell populations that had previously been 
active during learning (Garner et al 2012; Liu et 
al 2012; Ramirez et al 2013; Cowansage et al 
2014). To test the direct involvement of the dentate 
gyrus (DG) of the HPC in memory formation, 
Liu et al (2012) expressed the blue light-sensitive 
ion channel, Channelrhodopsin (ChR), in c-fos- 
expressing neurons activated by context fear 
learning. Stimulation of these cells was sufficient to 
induce contextual memory recall, providing the first 
proof-of-principle evidence that learned  behavior 
can emerge from activity  within  a   stable  and 
explicitly targetable cell population.   To investigate 
whether   learning   also   activates     an early, 
behaviorally-relevant network in       specific 
neocortical circuits, we, in the Mayford lab, used 
a c-fos-regulated transgenic mouse to   express the 
ChR variant,  ChEF,   during    contextual    fear 
conditioning. Optical stimulation of tagged neurons 
in RSC revealed that as in the DG, direct optical 
stimulation of tagged RSC neurons could trigger 
context-specific behavior.  Interestingly, artificially- 
triggered memory recall could be triggered even 
when the HPC was pharmacologically inactivated, 
suggesting that a functional representation memory 
sufficient to drive behavior was established in RSC 
within the first day after training (Cowansage et al. 
2014).   This finding is consistent with previous 
work, showing that cortical circuits are explicitly 
activated, and in some circumstances required,  
for new associative memory formation (Corcoran 
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Nevertheless, the validation of new technologies 
that permit long-term multi-system tracking and 
manipulation of specific circuits has led to renewed 
efforts to unify models of cortico-hippocampal 
dynamics (Rosenbaum et al., 2001; McCormick et 
al., 2010). Intriguingly, as more studies have begun 
to investigate cortical systems in direct parallel 
with hippocampal plasticity, the mechanistic 
involvement of these two anatomical systems has 
appeared to increasingly converge. Thus, inasmuch 
as the HPC may retain an extended role in long- 
term memory maintenance (Debiec et al 2002; 
Winocur et al 2010; Goshen et al 2011; Lopez et 
al 2012; Schlesiger et al 2013), the neocortex may 
carry unexpectedly detailed representations of 
memory, regardless of post-training timepoint 
(Bucci et al 2007; Corcoran et al 2007; Keene et al 
2008c; Keene et al 2008b; Wang and Morris 2010; 
Corcoran et al. 2011; Tse et al 2011). These rapidly 
formed cortico-hippocampal connections therefore 
seem likely to provide a rapid mechanism for 
linking, and possibly comparing, new input with 
previously stored content.

Future brain-wide studies that map discrete 
epochs of learning- and memory-related activity 
over long intervals of time may provide greater 
insights into the true mechanistic distinctions 
between cortical and hippocampal systems. Other 
critical questions for future investigations include: 
1) How are patterns of cellular activity related to 
stored information within specific cells? 2) What 
is the smallest module of useable information, 
and how are these units organized within circuit and 
synapse populations? 3) Finally, how are complete 
associations rendered in circuits as unitary cellular 
representations of experience? Studies aimed at 
addressing these questions will ultimately be 
needed to fully disambiguate the tangible circuit 
mechanisms that permit “now” experiences 
to become persistently incorporated into “then” 
memories.
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Previous studies have demonstrated a role for Nerve Growth Factor (NGF) species stimulating p75–
neurotrophin receptor (p75NTR) mediated apoptotic pathways in several types of neural cells. The 
neuroinflammatory response in several neurodegenerative diseases is associated with activation of glial 
cells, which express increased levels of NGF species that potentially may trigger p75NTR-dependent 
apoptosis in target cells. At the same time, activated astrocytes and microglia also produce oxidants 
and nitric oxide-derived species that could react with NGF causing post-translational molecular 
modifications. Here, we review the rationale supporting NGF nitration by peroxynitrite and the 
mechanisms explaining its pathogenic role in neurodegenerative diseases. The occurrence of nitrated 
NGF species in Amyotrophic Lateral Sclerosis (ALS) and Alzheimer’s disease (AD) offers an exciting 
new mechanism by which the canonic neurotrophin signaling could be subverted under inflammatory 
conditions.

The emerging concept of NGF was developed in 
1949 by Rita Levi-Montalcini, as a soluble factor 
released by tumor tissues that strongly stimulated 
neurite growth (Levi-Montalcini, 1952; Levi-
Montalcini and Hamburger, 1951). Subsequent 
studies allowed the identification and purification 
of NGF as a protein, taking advantage of its high 
concentration in adult male mouse sub-maxillary 
glands (Levi-Montalcini, 1987). Nowadays, NGF is 
the best characterized of all neurotrophins. Although 
originally established as an essential trophic factor 
for the development of central and peripheral 
nervous system, NGF also mediates trophic and 
regenerative signals in the adult nervous system, 
including an emerging role in pain transduction 
mechanisms associated to tissue inflammation 

(McMahon, 1996). NGF has also emerged as a key 
factor mediating the complex interplay between the 
nervous and immune systems, being referred as a 
“neurokine” because of the ability to be produced 
in inflammatory and modulated immune cells (Levi-
Montalcini et al, 1996). Such neuroimmune role of 
NGF may play a critical role in several pathologies 
including neurodegenerative diseases, acute brain 
or spinal cord injury, chronic pain syndromes, and 
autoimmune diseases.

As observed for other neurotrophins, NGF 
signaling is complex and regulated at several 
cellular levels. NGF exerts its actions through two 
non-homologous transmembrane receptors, the 
high affinity tyrosine kinase receptor TrkA and 
the p75NTR (Ebendal, 1992; Meakin and Shooter, 
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1992). p75NTR is a member of the tumor necrosis 
factor receptor superfamily and can act as a death 
receptor signaling apoptosis in several neuronal 
populations (Barrett, 2000; Nykjaer et al, 2005). 
The mechanism of p75NTR-induced apoptosis 
can involve downstream production of nitric oxide 
and peroxynitrite formation (Pehar et al, 2004). In 
addition, NGF is synthesized as a precursor protein 
(proNGF) that is then processed extracellularly or by 
specific proteases in the trans-Golgi compartment, to 
form mature NGF (Greene et al, 1968; Seidah et al, 
1996). Since proNGF and mature NGF interact with 
different receptor complexes displaying specific 
biological activities, the site and efficiency of proNGF 
processing may greatly influence the resulting 
physiological effects. Finally, both proNGF and NGF 
might experience post-translational modification by 
oxidants and nitrating molecules that are produced 
in inflammatory conditions (Harrington et al, 2004; 
Pehar et al, 2006b). 

While previous reports have been published on 
the pathological role of the proNGF/NGF signaling 
in neurodegenerative conditions (Belrose et al, 2014; 
Capsoni et al, 2011; Fahnestock et al, 2001; Tiveron 
et al, 2013), the present review summarizes recent 
evidence on post-translational modifications of 
NGF that could lead to a gain of function of NGF 
in neurodegenerative diseases such as ALS and AD.

NGF AS A TARGET OF PEROXYNITRITE 
DURING INFLAMMATION

Peroxynitrite is a potent nitrating compound that 
is formed by the spontaneous reaction of nitric oxide 
and superoxide (Beckman and Koppenol, 1996; Radi 
et al, 2001). It is typically produced in inflammatory 
environments where microglia (or macrophages), 
astrocytes, endothelial cells or infiltrating immune 
cells have the ability to produce excessive levels 
of oxygen radicals and nitric oxide (Fig. 1). In 
turn, peroxynitrite behaves as a potent oxidant and 
nitrating agent capable of reacting and modifying 
a wide variety of biomolecules including proteins, 
lipids, and DNA (Beckman, 1996; Radi, 2004). 
Tyrosine nitration (i.e., addition of a nitro group to 
the aromatic ring) is considered as a footprint of 
oxidative damage mediated by peroxynitrite (Daiber 
et al, 2013; Viera et al, 2013). Although alternative 

pathways involving peroxidases using nitrite could 
also nitrate tyrosine residues, peroxynitrite has been 
shown to be the predominant nitrating agent in 
neurodegeneration (Estevez et al, 1998; Pacher et 
al, 2007). Several proteins such as Mn-SOD, actin, 
neurofilament-L, cytochrome c, thioredoxin-1, 
tyrosine hydroxylase, Hsp90, fibrinogen, glutathione 
Stransferase and α-synuclein are known to be nitrated 
by peroxynitrite, inducing subsequent changes in 
protein structure, function or turnover (Ischiropoulos 
and Beckman, 2003).

The NGF monomer contains 2 well-conserved 
tyrosine residues at positions 52 and 79 (Bradshaw 
et al, 1994) that are target for peroxynitrite-induced 
nitration (Pehar et al, 2006b). Such post-translational 
modification may have important consequences 
in NGF biological activity in conditions of 
inflammation.

NITRATED-NGF AS A MEDIATOR OF MOTOR 
NEURON APOPTOSIS IN ALS

ALS is a fatal paralytic disorder characterized 
by selective death of motor neurons. While causes 
of progressive loss of motor neurons in ALS remain 
largely unknown, it is now accepted that glial cells 
and related inflammatory phenotypes play a role in 
disease pathogenesis (Barbeito et al, 2004; Henkel 
et al, 2009; Ilieva et al, 2009). In mice carrying 
the SOD1G93A mutation causing familial ALS, 
NGF levels are increased 2-fold in the spinal cord, 
being localized in a subset of reactive astrocytes 
surrounding degenerating motor neurons. Moreover, 
up-regulation of astrocytic NGF is coincident 
with the expression of p75NTR in damaged motor 
neurons, conditions that could elicit neuronal 
apoptosis (Pehar et al, 2004).

Since adult motor neurons lack TrkA and p75 
receptors they are not responsive to NGF. However, 
motor neurons can re-express p75NTR after nerve 
injury and in ALS (Lowry et al, 2001; Rende et 
al, 1995; Seeburger et al, 1993), thus becoming 
vulnerable to NGF. Accordingly, p75NTR has been 
implicated in motor neuron death occurring in 
transgenic mice models of ALS (Copray et al, 2003; 
Lowry et al, 2001). Interestingly, studies performed 
in embryonic motor neuron cultures expressing 
p75NTR have allowed the characterization of NGF-
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We previously reported that spinal cord extracts 
from ALS mice contain sufficient NGF to stimulate 
p75NTR-dependent apoptosis of cultured motor 
neurons in the presence of an external source of nitric 
oxide (Pehar et al, 2004). However, the levels of 
NGF measured by ELISA in the degenerating spinal 
cord from mutant hSOD1 mice were in the range of 
pg/ml, a concentration much lower than necessary 
for purified NGF to induce apoptosis in motor 
neuron cultures. These findings lead us to search for 
specific NGF species having more potent effects on 
p75NTR-dependent apoptosis. Remarkably, Pehar 
et al found that oxidation and nitration of NGF by 
exposure to peroxynitrite increased the NGF potency 
for inducing apoptosis of motor neurons by 10,000-
fold in the presence of nitric oxide. In this model, 
blocking antibodies to p75NTR or downregulation 
of p75NTR expression by antisense treatment 
completely prevented motor neuron death, indicating 
nitrated NGF activates p75NTR signaling (Pehar et 
al, 2006a). Thus, peroxynitrite-treated NGF appears 
as the most potent neurotrophin eliciting p75NTR-
dependent cell death in culture at physiologically 
active concentrations (pg/mL). The same study 
showed evidence that Tyr52 is more susceptible to be 
nitrated by peroxynitrite. Thus, the gain of apoptotic 
activity by nitrated NGF seems to be dependent 
of tyrosine nitration, leading to conformational 
changes in the protein and subsequent aggregate 
formation (from dimers to octamers) (Pehar et al, 
2006b). Such oligomeric NGF species may interact 
with increased number of p75NTR receptors (e.g. 
inducing trimerization) or facilitate the formation of 
atypical receptor complexes (e.g. simultaneous p75/
TrkA activation). Experimental data showing that 
only a small fraction of nitrated NGF is necessary to 
elicit apoptotic signaling in motor neurons strongly 
supports the hypothetical model of nitrated NGF 
gain of function. The precursor form of NGF, pro-
NGF, is also known to induce motor neuron death 
via engagement of the p75NTR (Domeniconi et al, 
2007). ProNGF binds with lower affinity to p75NTR 
than NGF, but it forms a high-affinity signaling 
complex by simultaneously binding to p75NTR 
and sortilin (Nykjaer et al, 2004). In the spinal cord, 
proNGF accumulates at higher concentrations than 
mature NGF, thus also becoming a potential target 
for peroxynitrite-mediated nitration (Beattie et al, 

induced apoptosis and its close association with 
peroxynitrite (Pehar et al, 2004). In this model, 
NGF-induced motor neuron apoptosis is dependent 
of a physiological flow of nitric oxide that, in turn, 
promotes the intracellular formation of peroxynitrite 
and extensive nitrotyrosine staining in apoptotic 
motor neurons. Therefore, nitric oxide and related 
nitrating species as peroxynitrite appear as relevant 
mediators or co-factors in motor neuron apoptosis, 
one of the potential targets being NGF. 

Fig. 1. Scheme showing the hypothetical mechanism 
leading to post-translational modification of NGF by 
peroxynitrite.



PROOF

114

this pro-survival chaperone into a toxic protein to 
motor neurons (Franco et al, 2013), suggesting that 
nitration of NGF and Hsp90 might have a synergistic 
effect.

NGF NITRATION IN ALZHEIMER’S DISEASE

Besides ALS, another neurodegenerative disease 
in which NGF nitration is thought to play a crucial 
pathogenic role is Alzheimer’s disease (AD). In 
2009, Bruno and Cuello (Bruno et al, 2009) reported 
the first evidence for the in vivo occurrence of 
“peroxynitrited” NGF species. This group detected 
nitrated proNGF in AD brain samples after 
immunoprecipitation with an anti-NGF antibody 
and subsequent PAGE/WB analysis using non-
specific anti-nitrotyrosine antibodies. This analytical 
approach provides a solid evidence for a proNGF 
post-translational modification associated with 
AD pathology. While oxidative stress and protein 
nitrotyrosine modification associated to concurrent 
neuroinflammation has been described in AD 
(Maccioni et al, 2001), nitrated proNGF appears to 
be a specific target displaying a pathogenic potential. 
In turn, administration of peroxynitrited NGF into 
rat hippocampus was found to induce a significant 
reduction of the TrkA phosphorylation level (Bruno 
et al, 2009), suggesting a down-regulation of the 
normal trophic signaling pathway mediated by NGF.

According to the Rita Levi-Montalcini and 
Viktor Hamburger´s neurotrophic theory, secreted 
NGF by cholinoreceptive neurons is captured by 
specific receptors expressed on cholinergic nerve 
terminals (TrkA and p75NTR) and then retrogradely 
transported to the cell body, where it exerts its 
neurotrophic activity (Aloe et al, 2012; Hamburger 
and Levi-Montalcini, 1949; Yuen et al, 1996). In 
AD, dysfunctional production of NGF species (high 
proNGF/low mature NGF) in cerebral cortex and 
hippocampus and the decreased NGF retrograde 
transport by cholinergic basal forebrain neurons 
may be responsible for the decline in cholinergic 
innervation and subsequent decline of cognitive 
functions (Cattaneo and Calissano, 2012). In 
accordance, the concentration of proNGF, but not of 
mature NGF, is increased in AD post mortem brains 
(parietal cortex and middle frontal gyrus) as compared 
to controls (Bruno et al, 2009; Fahnestock et al, 

2002).
Interestingly, Cassina et al have proposed a 

mechanism by which spinal motor neurons release 
Fibroblast Growth Factor-1 (FGF-1) in response 
to damage, inducing NGF expression and nitrative 
stress in surrounding astrocytes (Cassina et al, 2005). 
Spinal motor neurons express high levels of FGF-
1, which can be released in response to axotomy or 
other stressful conditions (Cassina et al, 2005; Saito 
et al, 2007). FGF-1 is known to potently induce 
NGF expression and secretion in astrocytes (Yoshida 
and Gage, 1991). In cultured spinal cord astrocytes, 
FGF-1 treatment is sufficient to induce a sustained 
up-regulation of NGF expression together with 
oxidative and nitrative stress (Cassina et al, 2005; 
Vargas et al, 2004). As expected, FGF1-stimulated 
astrocytes potently stimulate p75NTR-dependent 
apoptosis of co-cultured motor neurons (Pehar et al, 
2004), further suggesting an autotoxic pathogenic 
loop.

While current evidence suggests nitrated NGF 
species could be produced or released by activated 
glial cells in ALS degenerating spinal cord, there is 
no direct evidence for its occurrence whether in cell 
cultures or tissue extracts. Most analytical techniques 
to detect and quantify modified NGF species 
with high sensitivity and specificity (e.g. mass 
spectrometry) cannot be easily applied to this protein 
because of several limiting factors such as: i) the low 
concentration of proNGF or NGF in the spinal cord 
(pg/mg of protein), ii) the small proportion of NGF 
that would react with endogenous nitrating species, 
iii) the lack of antibodies that specifically recognize 
nitrated NGF species and iv) the variety of oxidized 
and nitrated molecular species likely to be produced 
by the reaction of NGF and peroxynitrite.

Finally, it is unlikely that nitrated NGF be the 
only nitrated protein produced during a pathological 
inflammatory condition. Several other proteins 
may be simultaneously modified by peroxynitrite 
(Ischiropoulos and Beckman, 2003; Pacher et 
al, 2007). In ALS tissue from both patients and 
animal models, nitrotyrosine can be detected by 
immunostaining in damaged motor neurons as well 
as surrounding glial cells (Abe et al, 1997; Peluffo 
et al, 2004; Trias et al, 2013), suggesting extensive 
nitration of  more abundant proteins. Interestingly, 
nitration of a single tyrosine residue on Hsp90 turns 
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A (2011) A dual mechanism linking NGF/proNGF 
imbalance and early inflammation to Alzheimer’s disease 
neurodegeneration in the AD11 anti-NGF mouse model. 
CNS Neurol Disord Drug Targets 10: 635-647.

Capsoni S, Cattaneo A (2006) On the molecular basis 
linking Nerve Growth Factor (NGF) to Alzheimer’s 
disease. Cell Mol Neurobiol 26: 619-633.

Capsoni S, Ugolini G, Comparini A, Ruberti F, Berardi 
N, Cattaneo A (2000) Alzheimer-like neurodegeneration 
in aged antinerve growth factor transgenic mice. Proc 
Natl Acad Sci U S A 97: 6826-6831.

Cassina P, Pehar M, Vargas MR, Castellanos R, 
Barbeito AG, Estevez AG, Thompson JA, Beckman 
JS, Barbeito L (2005) Astrocyte activation by fibroblast 
growth factor-1 and motor neuron apoptosis: implications 
for amyotrophic lateral sclerosis. J Neurochem 93: 38-46.

Cattaneo A, Calissano P (2012) Nerve growth factor 

2001). This anticipates that a simply dysregulation 
of NGF signaling would be sufficient to trigger an 
autotoxic loop leading to AD’s pathology as suggested 
by different studies. For example, transgenic 
mice expressing a recombinant anti-NGF AD11 
neutralizing antibody in the adult brain, develop age-
dependent neurodegenerative Alzheimer’s disease-
like pathology including the formation of amyloid 
plaques, hyper-phosphorylated tau and cholinergic 
deficits (Capsoni et al, 2000). Capturing NGF by 
mAbαD11 induces a functional imbalance between 
NGF and its precursor protein proNGF resulting in an 
excess of proNGF, which reproduces the alterations 
found in patients with AD (Capsoni and Cattaneo, 
2006). In another study, transgenic mouse lines 
expressing a furin-resistant form of mouse proNGF 
that accumulates the proneurotrophin in high levels, 
also reproduces the AD-like neurodegenerative 
phenotype. Finally, Aβ oligomers itself also affect 
NGF metabolism, inducing NGF degradation and 
decreasing proNGF processing (Tiveron et al, 2013), 
suggesting a close association between dysfunctional 
NGF signaling and AD’s pathology. In this context, 
the nitrative modification of NGF species, either 
proNGF or mature NGF, might greatly influence the 
NGF signaling through p75NTR, TrkA and sortilin 
receptors. 

In conclusion, available experimental evidence 
suggests that NGF and proNGF may be produced 
in aparticular pathophysiological inflammatory 
environment, where NGF is overexpressed coincident 
with a cellular status of oxidative and nitrative stress. 
Nitrated NGF species are likely to be produced in 
ALS and AD to mediate specific signaling associated 
to neuronal damage or glial activation. Further studies 
are needed to determine whether nitrated NGF can be 
used as a marker of neurodegeneration and/or be a 
target for neuroprotective neutralizing antibodies.
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