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Neurodegeneration is becoming a major health problem for ageing population worldwide. The high 
morbidity and mortality for neurodegenerative disorders demand earlier diagnosis and better taylored 
treatment. Neurodegeneration occurs as consequence of progressive deterioration of the neuronal 
structure and activity that eventually leads to neuronal dysfunction and cell death. Recent discoveries 
highlighted the existence of common mechanisms underlying the onset and progression of a variety of 
neurodegenerative disorders. Understanding the pathogenic mechanisms of neurodegenerative diseases 
and interfering with aberrant neural activity represent the principal aims of many investigators in the 
field. Reversible modification of proteins, such as phosphorylation and ubiquitination, are the most 
common and important modes to control protein function.  In neurons, protein modification induced 
by the second messenger cAMP at subcellular compartments is emerging as a key mechanism to control 
the generation and dissemination of neutrophin signals from cell membrane to target substrates. 
Dysregulation of such a mechanisms could promote neuronal dysfunction and disease. Here, we will 
focus on the role of deranged cAMP signaling in neurodegenerative disorders.

Protein phosphorylation is an evolutionarily 
conserved postranslational mechanism that 
eukaryotic cells adopt to control complex biological 
activities, as growth, differentiation, apoptosis, ion 
channel activity and synaptic transmission. cAMP is 
an ancient second messenger that plays a major role 
in a wide array of biological processes, as growth 
and development, metabolism, differentiation and 
neuronal activity (Tasken and Aandahl, 2004, Taylor 
et al., 2008). cAMP accumulates in response to 
the activation of adenylyl cyclase by extracellular 
ligands acting through G-protein coupled receptors 
(GPCR). In eukayotes, most of the effects elicited by 
cAMP are consequences of the activation of protein 
kinase A (PKA). Binding of cAMP to the regulatory 
subunit (R) of PKA holoenzyme releases the catalytic 

subunit (PKAc), which in turn phosphorylates a wide 
array of cellular substrates, controlling fundamental 
aspects of cell physiology (Taylor et al., 1992) (Fig. 
1). The biochemical and functional features of PKA 
holoenzymes are largely determined by the structure, 
properties and relative abundance of the R subunits 
(McKnight et al., 1998). In this context, the activation 
rate, the persistence and magnitude of cAMP signals 
contribute to enhance specificity and sensitivity of a 
given tissue to distinct GPCR ligands. In mammalian 
cells, PKA is concentrated in membranes and 
subcellular compartments through interactions with 
A-kinase anchor proteins (AKAPs). AKAPs contain
a PKA-binding motif that tethers the regulatory
subunit of PKA holoenzyme and a targeting domain
that directs the kinase complex to subcellular
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response to extracellular stimuli (Feliciello et al., 
2001, Beene and Scott, 2007). It appears that AKAPs 
play an important role in key neuronal duties. 
Thus, manipulation of AKAP signaling complexes 
in vivo profoundly impacts on highly specialized 
brain functions, as learning and memory. Emerging 
evidences, discussed here, indicate that derangement 
of compartmentalized cAMP signaling is a 
pathogenic mechanism relevant for the development 
and progression of neurodegenerative disorders.

Intracellular targeting of cAMP signaling in neurons
Compartmentalized cAMP signaling plays a 

major role in neurons. Genetic and pharmacological 
interference with cAMP signaling in the brain is 
often associated to defects in ion channel activities, 

compartments and organelles. As consequence of 
PKA targeting by AKAPs, cAMP signals generated 
at cell membrane efficiently travel from sites of 
signal generation to distal compartments. This 
system provides a mechanism that efficiently couples 
stimulation of membrane receptors to activation of 
downstream PKA substrates/effectors (Feliciello et 
al., 2001, Tasken and Aandahl, 2004). AKAPs form 
a transduceosome that assembles components of the 
cAMP generating systems (receptors and adenylate 
cyclase), effectors (PKA and Epac) and attenuating 
enzymes, as cAMP phosphodiesterases (PDEs) and 
phosphatases (PPs). This implies that complexes 
nucleated by AKAPs create intracellular sites where 
distinct signaling pathways converge and are locally 
attenuated or amplified, optimizing the biological 

Fig. 1. Schematic representation of cAMP/PKA pathway. Activation of adenylate cyclase (AC) by G-protein coupled 
receptors (GPCRs) converts ATP in the second messenger cAMP. cAMP binding to R subunit of PKA causes dissociation 
of inactive PKA holoenzyme. The free catalytic subunit (C) phosphorylates a wide array of substrates exerting several 
biological responses. Phosphodiesterases (PDEs) hydrolyze cAMP ensuring the attenuation of the signaling.
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aspects of neuronal activity, such as learning and 
memory (Bauman et al., 2004, Tunquist et al., 2008, 
Sanderson and Dell’Acqua, 2011). AKAP12 (also 
known as AKAP250/Gravin) is a scaffold protein 
that, in response to catecholamine stimulation, 
rapidly and reversibly recruits PKA, PKC, 
calmodulin and phosphodiesterase 4D (PDE4D) in 
proximity of β2-adrenergic receptor (β2-AR). By 
recruiting this multivalent complex at membrane, 
AKAP12 controls resensitization and recycling of 
the activated β2-AR (Lin et al., 2000). Interestingly, 
mice bearing mutation of AKAP12 gene exhibit 
deficits in PKA-dependent synaptic plasticity and 
memory storage (Havekes et al., 2012). WAVE1 
is another member of the neuronal AKAPs that 
binds and targets PKA and other signaling enzymes 
to the actin cytoskeleton. Actin remodeling is a 

neuronal transmission, synaptic plasticity, learning 
and memory (Abel and Nguyen, 2008, Sanderson 
and Dell’Acqua, 2011). Several AKAPs have been 
isolated from neurons and functionally characterized. 
Although all share common ability to bind PKA, 
their relative abundance in distinct brain areas, their 
localization at discrete subcellular compartment 
and the property of each family of neuronal AKAP 
to assemble distinct multimeric complexes confer 
enormous specificity in the regulation of different 
brain activities. In this context, AKAP5 (also known 
as AKAP79/150) is a prototypic neuronal AKAP 
broadly expressed in different brain areas. AKAP5 
forms a complex which includes not only PKA, but 
also protein phosphatase 2B/calcineurin (PP2B/CaN) 
and protein kinase C (PKC). Through these different 
modular interactions, AKAP5 controls important 

Fig. 2. Proteolysis of NOGO-A by cAMP-praja2 pathway promotes neurite outgrowth.  Activation of adenylate cyclase 
(AC) by BDNF induces PKA-mediated phosphorylation of praja2, which ubiquitinates and degrades NOGO-A through 
the proteasome. Decrease of NOGO-A levels promotes neurite outgrowth. 
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and targets PKA on microtubules. In neurons, MAP2 
is localized at dendrites and it has been implicated 
in neuritogenesis and synapse formation (Johnson 
and Jope, 1992). Mice bearing a mutation within the 
PKA binding domain of MAP2 show morphological 
alterations of the hippocampal architecture and 
significant deficit in memory processing (Khuchua 
et al., 2003, Weisenhaus et al., 2010).

Ubiquitin control of cAMP signaling in neurons
Ubiquitin-directed proteolysis of adenylate 

fundamental step in neurite outgrowth. It ensures 
the formation of appropriate synaptic connections 
during the development and a more dynamic 
cytoskeleton structure that favors neuronal plasticity 
(Higgs, 2001, Nozumi et al., 2003). As expected, 
WAVE1 knockout mice show cognitive and 
behavioral defects as impairment of hippocampal 
learning and memory and deficit in locomotor 
activity (Bauman et al., 2004). MAP2 (microtubule-
associated protein-2) is an AKAP highly expressed 
in neurons and in non-neuronal cells. MAP2 tethers 

Fig. 3. Perturbation of cAMP signaling can contribute to development and progression of neurodegenerative disorders. 
In course of Alzheimer disease (AD), upregulation of phosphodiesterases (PDEs) decreases cAMP signaling. Moreover, 
hyperphosphorylation of tau by AKAP79-anchored PKA induces the formation of aggregates that impair synaptic activity, 
leading to neuronal cell death. In Parkinson’s disease (PD), upregulation of AKAP1•PKA axis reverses mitochondrial 
defects, suggesting a pathogenic role of deranged cAMP signaling in the disease. In Huntington disease (HD), poly(Q)-
expanded HTT (mHTT) inhibits CREB-dependent transcription of genes involved in synaptic plasticity. Furthermore, 
inhibition of PKA is linked to mHTT aggregates and progression of the disease.
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directed gene transcription, positively impacting on 
synaptic plasticity and long-term memory (Lignitto 
et al., 2011a, Lignitto et al., 2011b). 

Role of cAMP and the ubiquitin pathway in neurite 
outgrowth

Neurite extension constitutes a major mechanism 
that underlies the development and activity of the 
central nervous system (CNS). Dynamic remodeling 
of neurites and synaptic terminals is a complex 
process that requires coordinated activation of 
distinct signaling pathways by neurotrophins (NTFs) 
and neurotransmitters (Huang and Reichardt, 2001, 
Poo, 2001). Inhibitory constraints of glial cells and 
of myelin-associated inhibitors on neurite extension 
prevent uncontrolled formation of new circuits, 
contributing to the maintenance and dynamic 
remodeling of brain activity, easily adapting the 
neural network to fluctuations of external stimuli. 
However, in course of brain injury, inhibitors of 
neuritogenesis oppose spontaneous regeneration of 
damaged neurites (Horner and Gage, 2000). This is a 
major limitation for therapeutic initiatives aimed to 
restore the perturbed brain activity.

Neurite outgrowth inhibithor NOGO-A, 
is a membrane protein abundantly expressed 
in oligodendrocytes and in distinct neuronal 
subpopulations. NOGO-A acts as the principal  
inhibitor of neuritogenesis in central nervous 
system (GrandPre et al., 2000). In the adult brain 
and in injured neurons, NOGO-A limits the axonal 
growth and regeneration. Deletion of NOGO-A 
gene promotes neuritogenesis and fasciculation of 
dorsal root ganglion neurons and oligodendrocytes 
and favors the neuronal network and recovery 
from post-ischemic adult brain jnjury (Bongiorno 
and Petratos, 2010). In response to neurotrophin 
stimulation, NOGO-A undergoes to ubiquitination 
and proteasomal degradation. praja2 was identified 
as the E3-ligase that ubiquitinates NOGO-A. praja2 
acts in response to cAMP-PKA stimulation by 
NTFs, as PKA phosphorylation of praja2 stimulates 
its ubiquitin ligase activity. Proteolysis of NOGO-A 
promotes neurite outgrowth, both in differentiating 
neurons and brain (Fig. 2) (Sepe et al., 2014). 
These findings highlight the existence of a negative 
regulation of NOGO-A stability by neurothrophins 
which act through compartmentalized cAMP 

cyclase, PDEs, PKA, AKAPs and downstream 
targets is emerging as important mechanism to 
finely modulate the extent and duration of the 
activated cascade. Regulation of the proteasome 
activity by PKA constitutes an auto-regulatory loop 
among components of the cAMP pathway and the 
ubiquitin•proteasome system (UPS). This cross-
talk shapes the wave of cAMP signaling, ensuring 
efficient and temporally-monitored propagation of 
the messages evoked by hormones at cell membranes. 
Dysregulation of any component of this circuitry 
may lead to cell dysfunction and human disorders, 
including neurodegenerative diseases (Carlucci et 
al., 2008b). The levels of AKAPs and PKA can be 
regulated at the post-translational level by the UPS. 
As an example, ubiquitin-dependent proteolysis of 
the mitochondrial scaffold AKAP121/149 in course 
of hypoxic conditions rapidly reduces mitochondrial 
respiration and oxidative ATP synthesis, providing 
a mechanism of attenuation of the cAMP/PKA 
cascade that occurs at sites distal to signal generation 
(Carlucci et al., 2008a). Similarly, delocalization 
of PKA from mitochondria affects the physiology 
of the organelles, promoting oxidative stress and 
mitochondrial fragmentation, eventually leading 
to mitophagy and cell death of cardiomyocyte and 
neurons. Accordingly, forced relocalization of PKA 
by overexpressing AKAP1 prevents mitochondrial 
damage in course of ischemic insult or Parkinson’s 
disease (Dagda et al., 2011). This constitutes an 
important mechanism to finely modulates the 
amplitude and duration of the signaling cascade, 
positively impacting on cell physiology.

A novel member of the AKAP family, namely 
praja2, has been recently characterized as essential 
relay in the cAMP cascade. praja2 is a prototypic 
AKAP with intrinsic E3 ubiquitin ligase activity 
abundantly expressed in different brain areas. praja2 
controls the stability of intracellular substrates and 
plays an essential role in different aspects of cell 
signaling. Under basal conditions, praja2 controls the 
bulk levels of compartmentalized PKA holoenzyme. 
In course of GPCR stimulation, praja2 optimally 
couples cAMP signaling to proteolysis of PKA-R 
subunits, reducing the R/PKAc ratio and sustaining 
substrate phosphorylation by the locally activated 
kinase.  Removing the inhibitory R subunits, praja2 
enhances CREB phosphorylation and cAMP-
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These proteinaceous aggregates damage neuronal 
structure and impair synaptic activity (Jicha et al., 
1999). Hence, PKA elicits the shift from normal 
tau towards hyperphosphorylated tau and it well 
correlates with the initial step of the disease (Fig. 
3). These studies predicted that enhancing cAMP/
PKA pathway could reverse the AD neuronal 
phenotype. Accordingly, selective inhibition of 
phosphodiesterases or prolonged exposure to an 
enriched environment that activates β2-adrenergic 
receptors ameliorated the cognitive functions and 
synaptic activity in mouse models of AD  (Gong et 
al., 2004, Smith et al., 2009a, Li et al., 2013).

Parkinson’s disease (PD) is the most common 
movement disorder, caused by the loss of 
dopaminergic (DA) neurons in the substantia nigra. 
PD also causes substantial alterations of the dendritic 
spine morphology and function of striatal projection 
neurons (SPNs) (Smith et al., 2009b, Schapira and 
Tolosa, 2010, Hirsch et al., 2013). Leucine-rich 
repeat kinase 2 (LRRK2) is a gene pathogenetically 
linked with both, familiar and sporadic PD (Singleton 
et al., 2013). LRRK2 acts as an AKAP-like protein 
and controls intracellular distribution of PKARIIβ 
in striatal neurons (Parisiadou et al., 2014). During 
synaptogenesis or in response to activation of 
dopamine receptor, LRRK2 negatively regulates 
PKA activity in the SPNs. The loss of function of 
LRRK2 gene induces synaptic translocation of 
PKA, where it increases phosphorylation of actin-
disassembling enzyme cofilin and of glutamate 
receptor GluR1. All this, eventually, leads to altered 
synaptogenesis and reduced synaptic activity in the 
developing SPNs (Muda et al., 2014, Parisiadou et 
al., 2014) . As envisioned, inhibition of adenylate 
cyclase reversed the PD phenotype in mice (Park et 
al., 2014).

Mitochondrial dysfunctions and disruption of 
mitochondrial homeostasis are implicated in the 
pathogenesis of PD (Abeliovich and Flint Beal, 
2006, Burte et al., 2014). PKA plays a crucial role 
in the mitochondrial homeostasis. Local activation 
of PKA leads to the efficient phosphorylation of 
several mitochondrial substrates. This modification 
modulates the effects of cAMP on distinct 
mitochondrial functions. The balance between 
fusion and fission requires a tight control by factors 
that participate in mitochondrial dynamics and 
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signaling. This UPS-driven signalling circuit 
targeting NOGO-A would promote and sustain 
biological processes underlying neurite extension, 
well impacting on neural network and synaptic 
activity. 

Deranged cAMP signaling in neurodegenerative 
diseases

As previously described, cAMP balance in 
neurons is crucial for learning, memory and 
physiological events. So, perturbation of local 
cAMP signaling can contribute to development 
and progression of neurodegenerative diseases. 
Evidences show potential involvement of the cAMP 
pathway in a growing list of neurodegenerative 
disorders, like Alzheimer’s disease, Parkinson’s 
disease and Huntington’s disease. Alzheimer’s 
disease (AD) is characterized by the progressive 
loss of cognitive function and memory and is the 
fourth cause of death of old people. The disease is 
characterized by accumulation of β-amyloid (Aβ) 
which forms plaques and intracellular neurofibrillary 
tangles, causing cholinergic transmission defects 
and neuronal loss (Sonkusare et al., 2005). It is 
generally assumed that inflammation is linked 
to the pathogenesis of the disease, and that the 
amyloid plaques seem to trigger this inflammatory 
process (McGeer and McGeer, 1995, Martinez et 
al., 1999, Halliday et al., 2000, Rogers et al., 2008). 
Cumulating evidences suggest that progression 
of AD is associated with a limitation of cAMP 
signaling. Studies show that, at early stage of the 
disease, cAMP phosphodiesterases (PDE4B, PDE7 
and PDE8) are upregulated (Figure 3) (Perez-Torres 
et al., 2003). By increasing the activity of cAMP-
hydrolyzing enzymes, Aβ accumulation causes a 
rapid and long-lasting decrease in the activity of PKA 
in cultured hippocampal neurons, with consequent 
inhibition of neurothrophin-dependent CREB 
phosphorylation (Vitolo et al., 2002). Derangement 
of compartmentalized cAMP also contributes to 
the pathogenesis of AD. Thus, AKAP79-mediated 
anchoring of PKA is responsible of neurofibrillary 
degeneration, one of the main features of AD patients 
(Scott et al., 1993, Leger et al., 1997). In particular, 
AKAP79 promotes hyperphosphorylation of tau by 
PKA. Hyperphosphorylated tau cannot be degraded 
and accumulates in the brain, forming aggregates. 
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neurodegenerative disorders. In the last years, it 
emerged that dissemination of signals from cell 
membrane to distinct intracellular compartments by 
AKAPs controls essential aspects of cell biology. 
Functional analysis of cAMP in cells and mouse 
lines carrying genetic inactivation of distinct classes 
of AKAPs revealed a major contribution of these 
proteins in differentiation, growth, development and 
metabolism. In this context, special attention has been 
drained by the characterization of the role of AKAPs 
in a variety of neuronal functions, as ion channel 
activity, synaptic transmission, learning and memory. 
Genetic defects affecting compartmentalized cAMP 
signaling in several neurological disorders are now 
contributing to define a pathogenic role of AKAPs 
in human diseases. Therefore, the structural and 
functional analysis of macromolecular complexes 
nucleated by AKAPs in neurons, the identification of 
pathogenic alterations of these signaling networks in 
vivo and the generation of appropriate mouse models 
of human disease will likely impact on the early 
diagnosis and better treatment of brain disorders.
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Mammalian carbonic anhydrases (CAs; also known as Carbonate Dehydratases EC 4.2.1.1) constitute 
a wide and complex family of enzymes, due to their peculiar schemes of expression and localizations 
in tissues and cells. Their fundamental activities are involved in transport of CO2  and bicarbonate, pH 
balance, gas exchange, ion transport. However, besides their enzymatic activities, CAs are emerging as 
key regulators in several cellular processes. Among CAs, CA IX is a classical target of the hypoxia-induced 
factor HIF1A, ensuring proper response of cells to hypoxic stresses. Although CA IX is widely recognized 
as a prognostic factor and a therapeutic target in human cancer, its known properties, as well as its recently 
described novel activities, may be relevant to the physiopathology of the nervous system. In this review 
we describe the general properties of the several members of the carbonic anhydrase family of enzymes 
and their involvement in the physiopathology of the nervous system. We then conclude with a focus on 
the recently described, novel molecular functions of CA IX, highlighting the potential involvement of this 
peculiar member of the family in the neuronal responses and adaptation to hypoxic stress.  

Pastorekova et al., 2004a). In mammals, 16 α-CA 
isozymes or CA-related proteins are present: thirteen 
are active isozymes, while three lack classical CA 
activity because of the absence of one or more of 
the three functionally important histidines, the zinc 
binding residues, required for CA catalytic activity 
(Tashian et al., 2000;  Nishimori et al., 2004). Fifteen 
CA isoforms are expressed in humans, as the CA 
XV gene is expressed in rodents, but it appears to 
have become a pseudogene in primates (Saari et al., 
2010). They can be classified according to various 
criteria, including subcellular localization, catalytic 
activity and expression pattern. So, we can now 
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Carbonic Anhydrases are ubiquitous zinc 
metalloenzymes, present in prokaryotes and 
eukaryotes, that catalyze the reversible hydration 
reaction of carbon dioxide (CO2) to bicarbonate 
(HCO3

-) and protons (H+). They are encoded by five 
evolutionarily unrelated gene families: the α-CAs 
(present in vertebrates, bacteria, algae and cytoplasm 
of green plants); the β-CAs (expressed predominantly 
in bacteria, algae and chloroplasts of monocotyledons 
and dicotyledons); the γ-CAs (mainly represented in 
archaea and some eubacteria); the δ-CAs and ζ-CAs 
(present in some marine diatoms) (Supuran et al., 
2003, 2004 and 2008a; Scozzafava et al., 2006; 
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its normal function (Sly et al., 1983). CA VA and VB 
are the unique mitochondrial isoforms and they are 
found in the matrix of mitochondria of hepatocytes 
and adipocytes, respectively (Shah et al., 2000); 
they play a key role in several metabolic pathways 
(Lynch et al., 1995). CA VI is the only secreted CA 
isoform; it is expressed in tears, respiratory airways, 
epithelial lining of the alimentary canal, enamel 
organs, and most significantly in human saliva 
(Ogawa et al., 2002; Leinonen et al., 2004; Kaseda et 
al., 2006; Smith et al., 2006; Feldstein et al., 1984). 
Its physiological function is likely associated to 
maintenance of pH homeostasis of the mouth (Ship 
et al., 2003). CA VII is primarily expressed in colon, 
liver, skeletal muscle, and in the brain (Bootorabi 
et al., 2010); its physiological role is unclear but 
it seems to play a role in neuronal excitement by 
way of HCO3

- production (Thiry et al., 2007). Also 
CA IX is a transmembrane isoform, but it shows a 
unique distribution pattern among all of the CAs. 
It is expressed only in a few normal tissues, but it 
is highly expressed in several cancers (Pastorekova 
et al., 1997). It is a well known marker of hypoxia 
and is involved in pH regulation, migration/invasion 
and survival in hypoxic cancer cells. It is indicative 
of a poor prognosis in many cancer types and is 
associated with resistance to conventional therapy. 
CA XII is yet another tumor-associated CA (Ivanov 
et al., 2001). However, unlike CA IX, it is widely 
expressed also in normal tissues such as the kidney, 
lung, prostate, ovaries, uterine endometrium, breast, 
and basolaterial membrane of gut epithelium 
(Ivanov et al., 2001; Parkkila et al., 2000; Hynninen 
et al., 2012; Kivela et al., 2000). Furthermore, it 
seems to be important for normal kidney function 
(Muhammad et al., 2011). CA XIII has been found 
in the thymus, kidney, submandibular gland, small 
intestine, and predominantly in both male and 
female reproductive organs (Lehtonen et al., 2004.); 
it seems to play a significant role in pH regulation 
of reproductive processes including sperm motility 
(Kummola et al., 2005). Membrane-bound CA 
XIV is expressed in most parts of the brain, colon, 
small intestine, urinary bladder, kidney, and retina 
(Fujikawa-Adachi et al., 1999a; Ochrietor et al., 
2005); its sequence is highly similar to that of  CA 
XII and its expression pattern  is strongly correlated 
with that of CA IV, suggesting a functional overlap 

distinguish intracellular (CA I-III, VA, VB, VII, VIII, 
X, XI, XIII) and extracellular (CA IV, VI, IX, XII, 
XIV), catalytically active (CAI-VII, IX, XII-XIV) 
and inactive (CA VIII, X, XI), wide-spread (CA 
II, IV, VB, XII, XIV) and restricted to few tissues 
(CA I, III, VA, VI, VII) isoforms (Pastorekova et 
al., 2004b). CAs catalytically active can be further 
divided  into 3 broad categories: CA II, IV, VB and 
VII are the fastest human CAs; CA VA, VI, IX and 
XII show relatively intermediate catalytic activity, 
while CA III, XIII and XIV are the slower enzymes 
(Aggarwal et al., 2013; Alterio et al., 2012). The 
inactive isoforms are known as carbonic anhydrase 
related proteins (CARPs) VIII, X and XI as their 
sequence is similar to that of active α-CA isozymes. 
Furthermore, there are two CARPs which exist as 
domains of protein tyrosine phosphate receptor 
(PTPR) ζ or β and γ (Ohradanova et al., 2007).

CAs are usually expressed in well differentiated 
metabolically active cells and tissues. Their 
enzymatic activity is involved in many physiological 
and pathological processes based on gas exchange, 
ion transport and pH balance, such as respiration 
and transport of CO2 and bicarbonate between 
metabolizing tissues and lungs; pH and CO2 
homeostasis; electrolyte secretion in various tissues 
and organs; biosynthetic reactions (gluconeogenesis, 
lipogenesis and ureagenesis); bone resorption; 
calcification; production of body fluids; digestion; 
renal acidification and tumorigenicity (Nishimori 
et al., 2005; Vullo et al., 2005; Kohler et al., 2007; 
Supuran et al., 1998). Cytosolic CA I (together 
with CA II) is expressed in red blood cells and 
works maintaining  physiological pH of the blood 
through production of HCO3

-  (Maren et al., 1980). 
CA II is the most widely distributed, being almost 
ubiquitous, and it is one of the most efficient catalyst, 
showing a Kcat of 1.4 x 106. Among tissues in which 
it is expressed there are kidney (Brown et al., 1983), 
bone and also ocular tissues (Gilmour et al., 2010). 
CA III shows a 200-fold lower catalytic activity 
(Supuran et al., 2008b) and it is expressed only in 
skeletal muscle and adipose (both white and brown) 
tissue (Carter et al., 1991; Stanton et al., 1991; Lyons 
et al., 1991). Membrane-bound CA IV is expressed 
in the lung and in kidney (Zhu et al., 1990); in 
the latter, CA IV catalytic activity is involved in 
bicarbonate resorption and therefore necessary for 
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Cl-/HCO3
- exchangers, V-ATPase proton pump, 

monocarboxylic acid transporters), acidification 
of organelles and metabolic production of protons. 
Carbonic anhydrases play a key role in pH regulation 
along with the mechanisms listed above. They convert 
protons to bicarbonate, thus buffering intracellular 
pH. In the CNS of mammals, all CA isozymes except 
CA I were shown to be expressed (Ghandour et al., 
2000; Parkkila et al., 2001; Nogradi et al., 2003; 
Lehtonen et al., 2004; Hilvo et al., 2005; Rivera 
et al., 2005; Halmi et al., 2006; Kida et al., 2006; 
Kallio et al., 2006; Wang et al., 2006). In the brain, 
they are primarily expressed in glial cells (Giacobini 
1962; Sapirstein et al. 1984; Cammer 1991), and to 
a lesser degree in neurones and in the extracellular 
spaces (Diaz et al. 1982; Agnati et al. 1995). Glial 
cells, comprising astrocytes, oligodendrocytes and 
microglia, have an important role in the regulation of 
ion concentrations in the intracellular and extracellular 
spaces in the brain (Maragakis et al., 2006). They are 
primarily glycolytic and convert glucose to lactic 
acid: pyruvate, instead of being metabolized through 
the tricarboxylic acid (TCA) cycle, is converted 
into lactate by lactate deydrogenase (LDH) isoform 
5 (Dringen et al. 1993; Tsacopoulos and Magistretti 
1996; Schousboe et al. 1997). Lactate leaves glial 
cells through the monocarboxylate transporter 
MCT-1, using protons produced through hydration 
reaction of CO2 by intracellular CAs (on the other 
hand bicarbonate produced through the same reaction 
activates the sodium-bicarbonate cotransport). The 
lactate is subsequently taken up into neurons via 
MCT-2 in a cotransport with a proton and converted to 
pyruvate by lactate deydrogenase (LDH) isoform 1 to 
be then channelled into the TCA cycle and ultimately 
to generate ATP and CO2 by oxidative metabolism; 
protons are extruded from neurons through Na+/H+ 
exchange (Deitmer, 2002). So doing the intracellular 
and extracellular CAs act cooperatively, coupling 
intercellular CO2 shuttling to the acid/base transporter 
activities (Obara et al., 2008). Several studies support 
the release of lactate from glial cells and the uptake 
of lactate into neurones (Walz and Mukieri 1988; 
Dringen et al. 1993; Poitry-Yamate et al. 1995; Hu 
and Wilson 1997; Schurr et al. 1997; Bouzier et 
al. 2000), processes that are both favoured by the 
different affinities for lactate of the glial MCT-1 and 
the neuronal MCT-2 (Bröer et al. 1997; Halestrap and 

between them (Kaunisto et al., 2002). Among 
processes in which CA XIV is involved there are pH 
balance in muscle and erythrocytes in response to 
chronic hypoxia and pH regulation in the retina (Juel 
et al., 2003; Vargas et al., 2012; Linser et al., 1984). 
Finally, we conclude this general presentation of CA 
gene family members with the CARPs VIII, X, and 
XI, that show a wide expression profile in all parts 
of the brain in both humans and mice (Fujikawa-
Adachi et al., 1999b; Okamoto et al., 2001; Taniuchi 
et al., 2002a; Akisawa et al., 2003). However, their 
expression was also found in many other organs: 
CARP VIII is expressed in the liver, lung, heart, gut, 
thymus, and kidney (Hirota et al., 2003; Akisawa et 
al., 2003); CA X is expressed in the human testis, 
salivary glands, and kidney (Okamoto et al., 2001); 
CA XI expression is found in the kidney, liver, and 
salivary glands (Fujikawa-Adachi et al., 1999b).

FUNCTIONS OF CARBONIC ANHYDRASES IN 
THE CENTRAL NERVOUS SYSTEM

Maintenance of pH homeostasis is a key factor in 
the functioning of the Central Nervous System (CNS). 
Among processes affected by pH shifts there are cell 
volume regulation, metabolism and transport of lactate, 
glutamine and glutamate and neuronal excitability. 
Specifically, protons modulate neuronal excitability by 
conditioning synaptic transmitter release, conductance 
of ionic channels and gap junctional communication. 
It has been also suggested that pH gradients may be 
important in neuronal differentiation, development of 
growth cones and neurites, regulation of pH in dendrite 
spines, learning and memory (Obara et al., 2008). 
Importance of pH regulation in the CNS becomes 
even greater considering that neuronal activity 
itself, or application of specific membrane ligands, 
cause rapid extracellular and intracellular pH shifts, 
that take place in time frames from milliseconds to 
minutes involving both neurons and glia. Other factors 
determining pH shifts in the CNS cells are amino acid 
neurotransmitters, GABA and glycine (Obara et al., 
2008). The mechanisms responsible for the regulation 
of intracellular pH in brain are analogous to those 
present in other tissues and include principally transport 
of acid/base equivalents across cell membranes 
(Na+/H+ exchanger, Na+/HCO3

- cotransporters, Na+-
independent Cl-/HCO3

- exchangers, Na+-driven 
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(Ruusuvuori et al., 2013). Both CA II and CA VII 
allow the fast replenishment of HCO3

- and consequent 
net uptake of Cl-, which are key mechanisms in 
the generation of excitatory HCO3

--dependent 
GABAergic responses. As anticipated, CARPs were 
also found to be expressed in the human and mouse 
brain, suggesting for them important roles in the brain 
development and/or neural functions (Taniuchi et al., 
2002a). However, their precise physiological roles 
are poorly understood. CARP VIII is predominantly 
expressed in the mouse and human cerebellum, 
especially in the Purkinje cells; differently, CARP X 
and XI have revealed a lower level of expression in 
the cerebellum (Nishimori et al., 2003; Taniuchi et al., 
2002a) and showed the strongest mRNA expression 
in the nervous tissues. CA X is highly expressed in the 
parietal cortex and the frontal cortex, lowly expressed 
in the midbrain, and extremely low expressed in 
the eye. CA XI mRNA is expressed  in all parts of 
the human brain. As suggested by their distribution 
patterns, CARPs may contribute to the development of 
the nervous system and motor coordination functions 
(Aspatwar et al., 2010).

CARBONIC ANHYDRASES IN 
NEUROLOGICAL DISORDERS

As a consequence of CA distribution in the CNS 
and of its key role in pH balance, the alteration of CA 
activity has been associated with some neurological 
disorders and behavioural abnormalities. CA II 
deficiency has been associated with pathological 
consequences such as mental retardation and brain 
calcification (Vlkolinsky et al., 2001). Carbonic 
anhydrase II deficiency syndrome (CADS) is an 
uncommon autosomal recessive disease; it represents 
the only known symptomatic inherited deficiency 
of a carbonic anhydrase. Three different structural 
gene mutations have been identified in patients 
with CADS: a missense mutation (H107Y), a splice 
junction mutation in intron 5 (G-to-C) and a splice 
junction mutation in intron 2 (Arabic Mutation). 
Clinical phenotype of subjects with CADS include 
osteopetrosis and renal tubular acidosis (Borthwick 
et al., 2003), reduced vision (Sly et al., 1985), 
sometimes decreased hearing (Zakzouk et al., 1995), 
possibly due to cranial nerve compression within 
narrowed bony foramina (Ohlsson et al., 1980), 

Price 1999). Therefore, in the brain the main source 
of CO2 are active neurones, which generate their ATP 
mainly by oxidative metabolism (Sokoloff 1993) to 
maintain their electrical and synaptic activity (Schurr 
et al. 1988, 1999; Izumi et al. 1997). After leaving 
the neurones by diffusion, CO2 may be hydrated to 
bicarbonate and protons by intracellular CA activity 
of glial cells to be then regenerated by extracellular 
CA activity on glial plasma membrane (Deitmer, 
2002), that also allows buffering of extracellular pH.

Experiments with CA IV/CA XIV knockout mice 
allowed to find that  in the hippocampus extracellular 
space CA activity is due mainly to isoforms CA IV 
and CA XIV (Shah et al., 2005). CA IX, an additional 
membrane-bound isoform, is lowly expressed in 
normal human brain tissue; it has been found in the 
ventricular lining cells and in the choroid plexus 
(Ivanov et al. 2001). In the mouse brain, CA IX 
was found in some neuronal axons and Purkinje 
cells  (Hilvo et al., 2004). It may represent another 
transmembrane isozyme, specifically present on 
neurons, in addition to CA XIV (Pan et al., 2012). CA 
IX is also expressed in the eye during development 
(Liao et al. 2003).

CA II and CAVII are the only cytosolic isoforms 
present in both somata and dendrites of mature 
hippocampal CA1 pyramidal neurons (Hubner et al., 
2013). CA II is the main isozyme of the CA family 
also in the human brain.  It is expressed in neurons and 
glia (Ghandour et al., 1980); specifically, it is located 
mainly in oligodendroglia and less in astrocytes 
(Cammer et al 1977).  CA II has multiple functions: 
production of HCO3

-, that is involved in regulation of 
membrane transport of Na+/water and contribute to 
cerebrospinal fluid formation; pH regulation, HCO3

- 
reabsorption and CO2 exhalation. Moreover, it seems 
to take part in the processes of myelination and to play 
a key role in signal processing, long-term synaptic 
transformation and attentional gating of memory 
storage (Sun et al., 2002). Interestingly, CA II has 
also been shown to be associated to several acid-base 
transporters, suggesting that it is involved in some 
metabolic pathways by providing the substrates for 
these various transporters (McMurtrie et al., 2004). 
Differently, CA VII is expressed only in neurons; 
together with CA II, they promote HCO3

--dependent 
GABAergic depolarization and excitation triggered 
by intense GABAAR activation in mature neurons 
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multifunctional transcription factor, CHOP, through 
the ATF6- and PERK-mediated UPR pathways (Ma 
et al., 2002; Ron et al., 1992) and subsequently to 
activation of the transcription of several apoptotic 
genes among which there is CA VI. Chop -/- cells 
are protected from ER stress-induced apoptosis 
(Zinszner et al., 1998). Moreover, interestingly, 
CA VI was also associated with taste. Specifically, 
inhibition of CA VI was shown to cause irregularities 
in taste perception, or sometimes complete loss 
of taste (Ortho-McNeil, 2013). This effect was, 
however restored following exposure to high levels 
of zinc (Shatzman et al., 1981).

Inhibition of CA VII determines the interruption 
of the current-gated channel, so leading to 
suppression of neural excitement that translates into 
pain or seizures. (Ruusuvuori et al., 2004). So, CA 
VII was proposed as a target for treatment of seizures 
and neuropathic pain (Asiedu et al., 2010).

CA IX is best known as a tumor-associated 
isoform whose expression is a negative prognostic 
factor, also indicative of resistance to conventional 
therapy. To dissect CA IX function in the brain, Gut 
et al. in 2002 generated CA IX-deficient mice by the 
targeted disruption of the Car9 gene. These mice 
showed distinct morphological and behavioural 
phenotypes. The brain tissue exhibited vacuolar 
degenerative changes and spongiform degeneration 
that were not visible in the wild-type mice. The brain 
tissue architecture was most severely disrupted. The 
Car9-/- mice also had several abnormal behavioural 
features and poorer memory function. These 
phenotypic changes seemed to be age-dependent, 
and the functional changes preceded the microscopic 
alterations in the brain. cDNA microarray analysis 
revealed 68 differentially transcribed genes, among 
which Atp2b2, Maf, Gand, Cntfr were genes of a 
special interest (Pan et al., 2012). 

The nature of the CAs expressed and most likely 
involved in the development and function of the 
ciliary epithelium has been clarified, so allowing 
a better understanding of glaucoma pathogenesis 
(Liao et al., 2003). Initially, it was believed that CA 
IV was the only carbonic anhydrase to be involved 
in glaucoma. Conversely, in the study of Liao et 
al. CA IX and CA XII were found in anatomical 
structures of the human eye, namely, in embryonic, 
neonatal/infant, and adult eyes, under normal and 

and also short stature, a large cranial vault, multiple 
skeletal fractures, developmental delay and cognitive 
defects varying from mild learning disabilities to 
severe mental retardation, anaemia, splenomegaly 
and secondary erythropoiesis. A proteomic study 
carried out on inferior parietal lobule (IPL) from 
subjects affected by mild cognitive impairment 
(MCI)MCI) hig ted increased levels of carbonylated
CA II associated with a parallel enzyme activity
decline, suggesting that dysfunction of CA II, due
to its oxidative modifications, impairs cognition
and might be associated with decreased cognition
in Alzheimer disease (AD) (Sultana et al., 2010). In
fact, previous studies reported a decreased activity
and oxidative modification of CA II in AD brain
(Butterfield et al., 2007; Meier-Ruge et al., 1984;
Sultana et al., 2006). Increased levels of CA II were
also found in the brain of Ts65Dn mice, a mouse
model for Down syndrome (DS), using a 2-D gel
proteomic approach. CA II up-regulation in the brain
of Ts65Dn mice was confirmed by western blot; CA
II levels were also investigated in infants and young
children with DS, in comparison with age-matched
controls; CA II resulted overexpressed in the frontal
and temporal cortices and white matter (Palminiello
et al., 2008). Finally, CA II has also been associated
with glaucoma (Aggarwal et al., 2013).

Mutant forms of CA IV have been shown to be 
associated with an autosomal dominant form of 
retinitis pigmentosa, despite intrinsic levels of wild-
type CA IV not being observed in ocular tissue 
(Rebello et al., 2004).

In 2012, Price et al. published a study in which 
they had obtained rescues of oxidative stress-induced 
pericyte loss in the diabetic mouse by inhibiting 
mitochondrial CA V with topomirate. A later study 
carried out by Shah et al. and published in 2013 
showed that topomirate was able to rescue both 
intracellular oxidative stress of pericytes, determined 
by exposure to high-glucose, and also apoptosis 
response, suggesting that CA V could be targeted in 
oxidative stress-related illnesses of the CNS.

Carbonic anhydrase VI may be involved in 
the pathogenesis of neurodegenerative diseases 
through the decrease of the intracellular pH during 
endoplasmic reticulum (ER) stress (Sok et al., 1999). 
In fact chronicization of Unfolded Protein Response 
(UPR) signalling leads to the induction of the 
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of CA8 gene in neurodegeneration and ataxia 
came from waddles mice, which were originally 
discovered at The Jackson Laboratory (TJL); these 
mice show a 19-base pair deletion in Car8 gene 
and are characterized by wobbly side-to-side ataxic 
movement. The deletion in Car8 gene leads to the 
complete absence of CARP VIII protein and caused 
both structural and functional abnormalities of 
excitatory synapses of Purkinje cells, which may lead 
to motor coordination defect in these mice (Hirasawa 
et al., 2007). The involvement of CA8 gene in human 
neurodevelopmental disorder was also suggested, 
based on the studies in members of Iraqi and Saudi 
Arabian families (Kaya et al., 2011; Turkmen et al., 
2009), whose affected members had a phenotype 
similar to wdl mice (Jiao et al., 2005), with ataxia 
and lifelong gait disorder, because of a homozygous 
missense mutation in the gene encoding CARP VIII 
that caused the substitution a serine 100 by a proline 
residue.  Their clinical features included cerebellar 
ataxia, dysarthria, mild mental retardation and 
tremor (Turkmen et al., 2009). In vitro, the mutation 
S100P induces proteasome-mediated degradation 
of CARP VIII protein, probably due to misfolding, 
leading to drastically reduced amounts of protein. 
It is well known that any expansion mutation in 
trinucleotide repeats can lead to neurodegenerative 
disorders in humans. Interestingly, unlike the other 
active isozymes belonging to the α-CA gene family, 
CARP VIII cDNAs of all mammals contain 19 GAG 
repeats which code for glutamic acid (Aspatwar et 
al., 2010).

At a cellular level CARP X protein is expressed 
in the myelin sheath. The expression of CARP X in 
the myelin sheath in the normal human and mouse 
brain and the loss of expression in the disease 
suggests the involvement of CARPX in myelin 
sheath organization (Taniuchi et al., 2002b). 
Moreover Okamoto et al. in 2001 reported that the 
Car10 sequence contains seven CCG repeats in 
the 5’-untranslated region followed by two CCG 
repeats located 16 bp downstream. These repeats 
have been associated with various neurological 
disorders (Kleiderlein et al., 1998); so, the presence 
of the CCG repeats in the Car10 gene makes it a 
potential candidate gene that might contribute to 
the development of neurodegenerative disorders. 
Specifically, CARP X could be involved in 
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pathological conditions including angle closure 
glaucoma, whereas CA IV was not found in the 
ciliary epithelium (Hageman et al., 1991). CA IX 
and CA XII expression was also found in cultured 
human ciliary nonpigmented epithelial (NPE) cells 
from normal and glaucomatous eyes. The NPE 
from glaucoma eyes expressed higher levels of CA 
XII, but not CA IX, in comparison to normal eyes. 
So, transmembrane CA IX and CA XII seem to be 
really involved in aqueous humour production. 
Moreover, as overexpressed, CA XII may be a target 
gene in glaucoma. CA9 gene hypermethylation 
(Cho et al., 2001) may determine  overexpression 
CA XII in the ciliary NPE cells, which may in turn 
cause overproduction of the aqueous humour and 
subsequently high intraocular pressure and hence 
lead to glaucoma; alternatively the overexpression 
of CA XII in glaucoma patients may be caused by 
mutated allele(s) of this gene. 

Many CAs are important therapeutic targets 
that may be inhibited to treat a range of disorders 
including edema, glaucoma, obesity, cancer, epilepsy 
and osteoporosis (Sethi et al., 2011). Glaucoma is 
a complex eye disorder, clinically and genetically 
heterogeneous (Sheffield et al., 2001; Lichter et al., 
2001; Wang et al., 2001). Multiple causative and 
modifying susceptibility genes are involved in its 
transmission. To date, at least 10 loci that potentially 
confer susceptibility to glaucoma have been mapped 
and so far only two causative candidate genes have 
been identified (WuDunn et al., 2002; Stone et al., 
1997; Rezaie et al., 2002). It is treated using carbonic 
anhydrase inhibitors both locally (dorzolamide, 
brinzolamide) as well as general (acetazolamide). 
It has been proved that these drugs not only lower 
the intra ocular pressure by reducing the rate of 
aqueous humour secretion mediated by the CAs in 
the ciliary epithelium, but also improve the flow 
in eye blood vessels. Moreover, acetazolamide 
increases the cerebral flow (Moss et al., 2010) and 
dorzolamide protects  retinal ganglion cells (RGCs) 
against the influence of apoptosis-inducing factors 
(Rohit et al., 2008). Another therapeutic application 
of acetazolamide is as anticonvulsants for treatment 
of epilepsy, even though its side effects limit use for 
extended periods (Ruusuvuori et al., 2013).

CARP VIII plays an important role in motor 
coordination. The evidence  for the involvement 
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These recent evidences shed light on a central role of 
CA IX on nucleolar response to hypoxic stress. 

A fine regulation of rDNA transcription is also 
required during differentiation, cell survival, and 
embryonic development. In particular, just before 
neuronal differentiation, for example in brain and 
retina, the synthesis and maturation markers of 
rRNA are rapidly reduced, suggesting that nucleoli 
may play an important role both in  neurogenesis 
and in neurodegeneration. Carbonic anhydrase 
IX function may be related to cell survival in the 
differentiating neuronal precursors, and the nuclear 
accumulation of this enzyme in hypoxic condition 
could shed light on new non-canonical role of CA 
IX also on nucleoplasmic transcription of DNA, 
rather than on nucleolar rDNA. Besides its function 
in nucleoli, further studies may indeed reveal CA 
IX functions in the nuclear transcription by RNA 
polymerase II as well. Recent evidence from our 
laboratory shows the potential involvement of CA 
IX in two models of neuronal differentiation. In fact, 
CA IX expression and its nuclear representation 
are dramatically increased in Sox1-negative, β3-
tubulin positive neurons (Figure 1) originating from 
differentiating mouse ES cell system (Parisi et al., 
2010). Additionally, CA IX expression and its nuclear 
representation are increased in SH-SY5Y cells 
differentiated upon retinoic acid treatment (Figure 
2). Accordingly, retinoic acid-induced neuronal 
differentiation of SH-SY5Y neuroblastoma cells is 
accompanied by decreased association of the general 
factor UBF1 and CA IX itself to nucleolar chromatin 
(Figure 3), in agreement with the decreased rDNA 
transcription occurring in differentiating neuronal 
cells. This may be seen as a molecular mechanism 
ensuring removal of CA IX from nucleolar chromatin 
and its availability outside nucleoli, to regulate genes 
transcribed by RNA polymerase II, sustaining cell 
survival in differentiated cells. Further experiments 
on the search for CA IX gene targets will clarify this 
matter.

Over these physiological conditions, nucleoli 
are able to rebuild their function and structure in 
response to different kind of stresses. In fact adverse 
growth conditions, like oxidative stress, metabolic 
deficits and oncogene activations rapidly induce a 
down-regulation of rRNA synthesis and a nucleolar 
architectural reorganization by transcriptional and 

demyelination disorders (Kleiderlein et al., 1998).
Recently, in 2013, Hsieh et al., studied the 

expression of CARP XI in cultured neuronal cells 
expressing mutant ataxin 3 and in humans and mice 
with defects in ataxin 3 protein that, as known, contains 
CAG trinucleotide repeats whose  expansion cause a 
neurodegenerative disorder known as spinocerebellar 
ataxia 3 /Machado-Joseph disease (SCA3/MJD) 
in both humans and mice (Kawaguchi et al., 1994) 
showing that CA11 mRNA was overexpressed  and 
CA11 protein present an altered cellular localization   
(Hsieh et al., 2013).

CARBONIC ANHYDRASE IX, AN UNUSUAL 
MEMBER OF THE CA FAMILY

CA IX has been described as a non-canonical 
carbonic anhydrase enzyme. In fact, even though 
its canonical subcellular localization is classically 
reported on plasma membrane, recent experimental 
evidences obtained in mammalian cells, including 
the neuroblastoma SH-SY5Y cells, have shown that 
CA IX is actively trafficking to, and from, the nuclei, 
via its interaction with importins and exportins 
(Buanne et al., 2013). Oxygen levels regulate nuclear 
and subnuclear CA IX localizations. In the nuclear 
compartment, CA IX binds to, and contributes to the 
active transcription of the repeated 45S rDNA genes 
in the nucleoli of normoxic cells. Contrariwise, in 
cells exposed to hypoxia, CA IX increases its presence 
in complexes with exportin-1 in the nucleoli. Such 
exportin-1 based mechanism of CA IX removal from 
nucleolar rDNA genes may act as a decoy mechanism, 
to down-regulate rDNA transcription (Sasso et al., 
2015). We proposed that this mechanism may act as 
an attenuator of energy consumption in the hypoxic 
cells. The conventional function of nucleoli is to 
synthesize the 28S, 18S and 5.8S ribosomal RNAs 
from the unique 45S rRNA precursor, transcribed 
by RNA polymerase I, and to assemble them in the 
ribosomal subunits with the nucleoplasmic-derived 
rRNA 5S and ribosomal proteins. These events are 
among the most energy demanding processes for a 
cell; so, rDNA gene transcription needs to be tightly 
regulated in order to preserve the energy homeostasis 
of a hypoxic cell. Indeed, it’s known that the 
nucleolar compartment can be used by cells in order 
to regulate different physiopathological conditions. 
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the regulation of protein stability during nucleolar 
stress. 

The great importance of a correct nucleolar 
activity and structure is also supported by its 
implication in several human diseases. Accordingly, 
decline in nucleolar size and functionality often 
occurs in neurodegenerative diseases. Silencing of 
rDNA was reported in the early stage of Alzheimer’s 
disease (AD) through rDNA genes methylation 
(Parlato and Kreiner, 2013); accordingly, it was 
proposed to exploit the epigenetic pattern of rDNA 
as a marker for AD progression. Also in Parkinson’s 
disease (PD) it was demonstrated that dopaminergic 
neurons are affected by nucleolar distruption 
(Parlato and Liss, 2014). In addition, nucleolin, a 
well-known marker rRNA synthesis, is dramatically 
reduced in the substantia nigra pars compacta from 

M. VITALE ET AL.

epigenetic changes. The reprogramed function of 
nucleoli involves the canonical cell-cycle arrest 
factor p53. The loss of nucleolar structure, often 
evident in stress conditions, provokes the release of 
ribosomal proteins (RPs) such as L5, L11, L23 and 
S7 that act as a decoy to sequestrate the E3 ubiquitin 
ligase Mdm2. In normal conditions, Mdm2 can 
ubiquitylate p53, inducing its loss of function via 
degradation. Moreover, another released nucleolar 
factor, RPL11, can directly bind the p53 mRNA, 
improving its translation.  In stress conditions the 
nucleolus seems to act as a sensor, inducing Mdm2 
sequester and p53 nuclear stabilization (Boulon et 
al., 2010). The potential role of CA IX and of its 
complexes in nucleoli with CAND1, an inhibitor of 
cullin-RING E3 ubiquitin ligases (CRL) (Buanne et 
al., 2013), may also reveal emerging scenarios in 

Fig. 1. CA IX expression in differentiating mouse ESCs. CA IX (green) expression is not detectable in undifferentiated 
murine embryo stem cells (ESCs) which are positive to staining with self-renewal marker OCT 3/4 (red), neither in 4-days 
differentiated ESCs, positive to the neural progenitor marker SOX 1 (red). At 7 days a group of cells are stained for CA IX 
in the nucleus, but not for SOX 1 (red). At the same time point, another group of cells are positive for both CA IX (green) 
and β3-tubulin (red), a marker of post-mitotic neurons. At 12 days of differentiation, the nuclear CA IX expression was 
still evident in neuronal cells, but also in β3-tubulin negative cells. The nature of these cells is yet unclear. Nuclei are 
highlighted by DAPI staining (blue).
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with AD and brain function disorders (Sun et al., 
2002; Supuran et al., 2008a). It is known that 
alterations in synaptic spines and loss of dendrites 
during aging are associated with a significant decline 
of CAs in the brain, and that this decline is even 

post-mortem samples of PD (Parlato and Kreiner, 
2013). Then, there is a potential for treatment of 
neurodegenerative disorders, including Alzheimer’s 
disease, using carbonic anhydrase activators as it is 
the anhydrase function impairment that is connected 

Fig. 3. Decreased CA IX occupancy of rDNA gene promoters in differentiated SH-SY5Y cells. The Figure shows the 
results of a chromatin immunoprecipitation assay of UBF1 and CA IX on pre-45S rDNA genes. Neuroblastoma  SH-SY5Y 
cells were treated with vehicle (DMSO, black bars), or differentiated to neurons with retinoic acid (white bars). Both the 
architectural UBF1 factor and CA IX decreased their association to rDNA chromatin in differentiated cells. 

Fig. 2. Subcellular distribution of CA IX in undifferentiated and retinoic acid (RA) -differentiated SH-SY5Y cell line. 
In differentiated neuroblastoma cells, CA IX is expressed in the cytoplasm, but it is much more abundant in the nucleus, 
compared to their undifferentiated counterpart. β3-tubulin is a differentiation marker and it is clearly highlighting the 
neurofilaments of differentiated cells.
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Alterio V, Di Fiore A, D’Ambrosio K, Supuran CT, 
and De Simone G, (2012) Multiple binding modes of 
inhibitors to carbonic anhydrases: how to design specific 
drugs targeting 15 different isoforms?. Chem. Rev., 
112(8): 4421–4468.

Asiedu M, Ossipov MH, Kaila K, and Price TJ (2010) 
Acetazolamide and midazolam act synergistically to 
inhibit neuropathic pain. Pain, 148(2): 302–308.

Aspatwar A, Tolvanen MEE, Parkkila S. (2010) 
Phylogeny and expression of carbonic anhydrase-related 
proteins. BMC Molecular Biology, 11(25).

Bootorabi F, Jänis J, Smith E, Waheed A, Parkkila 
S, et al. (2010) Analysis of a shortened form of human 
carbonic anhydrase VII expressed in vitro compared to 
the full-length enzyme, Biochimie, 92(8): 1072–1080.
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Bouzier A-K, Thiaudiere E, Biran M, Rouland R, 
Canioni P and Merle M (2000) The metabolism of [3-
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PJ et al. (1997) Comparison of lactate transport in 
astroglial cells and monocarboxylate transporter (MCT 1) 
expressing Xenopus laevis oocytes. J. Biol. Chem. 272: 
30096-30102.

Brown D, Kumpulainen T, Roth J, Orci L, (1983) 
Immunohistochemical localization of carbonic anhydrase 
in postnatal and adult rat kidney. Am. J. Physiol., 245(1), 
F110–118.

Buanne P, Renzone G, Monteleone F, Vitale M, 
Zambrano N et al. (2013) Characterization of carbonic 
anhydrase IX interactome reveals proteins assisting its 
nuclear localization in hypoxic cells. J Proteome Res 12: 
282–292.

Butterfield DA, Reed T, Newman SF, and Sultana 
R. (2007) Roles of amyloid beta-peptide-associated
oxidative stress and brain protein modifications in the
pathogenesis of Alzheimer’s disease and mild cognitive
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more dramatic in brains of AD subjects (Scheff et 
al., 2006). Several CA isozymes are downregulated  
in the brain of patients affected by Alzheimer’s 
disease (Meier-Ruge et al., 1984). Phenylalanine is a 
CA activator; when experimental animals are treated 
with it, a pharmacological enhancement of synaptic 
efficacy, spatial learning, and memory are observed, 
suggesting that its possible use for the management 
of conditions in which learning and memory are 
impaired, such as Alzheimer’s disease or aging (Sun 
et al., 2001). 

CONCLUSIONS

CA IX is a well known target of the hypoxia-
induced HIF1A factor in mammalian cells of 
different origin, mostly characterized in human 
cancer. Membrane-localized CA IX does indeed 
contribute, together with intracellular CAs, to the 
metabolic adaptation of cells to hypoxic stress. A 
recently described, novel function of CA IX within 
hypoxic responses of mammalian cells, including the 
SH-SY5Y-based model of differentiation, shows the 
potential involvement of CA IX in the attenuation 
of rRNA transcription, to safeguard the delicate 
energetic state of cells and to guarantee their survival 
during hypoxia and differentiation. While the main 
efforts of the researchers involved in CA IX studies 
are dedicated to find its selective inhibitors for 
applications in oncology, the discussed evidences 
underline a therapeutic potential for CA IX activation 
in brain ischemia and neurodegenerative disorders.
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pathologies. Targeting astroglia in neurodegeneration may open new avenues for novel therapeutic 
strategies aimed at preventing and delaying the progression of neurodegenerative disorders.

NEUROLOGICAL DISEASES: THE with synaptic machinery underlie fast signalling 
within neural networks. The second class of 
cells that evolved in parallel is represented by a 
hugely heterogeneous neuroglia that assumes full 
responsibility for nervous system homeostasis and 
defence. These two classes of neural cells differ in 
their biochemistry and physiology and yet they are 
combined to form nervous tissue, which functions 
because of continuous intimate communications 
between all cellular elements.

Pathological insults trigger homeostatic failure 
which manifests in neurological diseases. This 
definition instantly highlights the fundamental 
role of neuroglia, that protects the nervous system 
through multiple homeostatic mechanisms and are 
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SCOURGE OF MANKIND

Diseases of the nervous system are the least 
understood and the least curable disorders known to 
us. The ultimate reason for this is an extraordinary 
complexity of the human nervous system, in which 
hundreds of billions of cells connected through 
many trillions of contacts create a sublime organ 
of computation, emotions and creativity. Evolution 
of the nervous system progressed through cell 
diversification and cell specialisation; this resulted 
in the emergence of many hundreds of types of 
neurones which are capable of generating and 
propagating action potentials, which in combination 
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the Purkinje neurones layer of the cerebellum; (x) 
tanycytes of the hypothalamus; (xi) pituicytes of the 
neuro-hypophysis; (xii) perivascular and marginal 
astrocytes, which form the glia limitans barrier at the 
pia mater; (xiii) ependymocytes, choroid plexus cells 
and retinal pigment epithelial cells. All these many 
cell types have distinct physiological properties that 
are defined by their respective positions in different 
regions of the brain and the spinal cord; and yet their 
common and major function remains maintenance of 
CNS homeostasis 

Astrocytic homeostatic functions are 
exceptionally diverse. In the development the radial 
glia acts as the pluripotent precursor cell that through 
asymmetric division gives rise to neuronal and glial 
progenitors. In the perinatal period, characterised 
by a massive wave of astrogliogenesis, astrocytes 
support synaptogenesis through secretion of 
numerous trophic factors such as trombospondins, 
hevin,  cholesterol and apolipoprotein E. Astrocytes 
control the structural organisation of the nervous 
tissue by organising the grey matter into relatively 
independent neurovascular units, associated with 
astroglial territorial domains. Astroglial cells 
regulate the appearance and function of blood-
brain and cerebrospinal fluid-brain barriers and 
form the blood-brain barrier in neurohypophysis. 
Astrocytes, which express numerous specific 
transporters, regulate ion homeostasis of the CNS, 
being particularly important for extracellular 
buffering of K+ ions, which is critical for neuronal 
excitability. Astrocytes are fundamental elements 
of neurotransmission being central elements in the 
regulation of turnover of neurotransmitters; the 
astroglial cells, for example, take up glutamate, 
γ-aminobutyric acid (GABA), glycine and adenosine 
by specific transporters, catabolise glutamate by 
glutamine synthetase and adenosine by adenosine 
kinase; both of these enzymes are expressed almost 
exclusively in astroglia. Astrocytes supply neurones 
with glutamine, which is a compulsory precursor 
for glutamate and GABA; inhibition of astroglial-
neuronal glutamate/GABA - glutamine shuttle 
invariably suppresses both excitatory and inhibitory 
neurotransmission. Astrocytes regulate water 
transport in the CNS by specific water channels 
of aquaporine 4 type, which are expressed only 
in astroglia. Astrocytes also represent the major 

capable of mounting an evolutionary conserved and 
multifaceted defensive reaction known as reactive 
gliosis. Although glial reactivity is known for almost 
100 years [defined in seminal works of Pío Del 
Río Hortega and Wilder Penfield (Del Rio Hortega 
and Penfield, 1927; Del Rio-Hortega, 1932)] only 
very recently the potential of neuroglia in defining 
the progression of neuropathology begun to be 
acknowledged (De Keyser et al., 2008; Parpura et 
al., 2012; Pekna and Pekny, 2012; Verkhratsky et al., 
2012; Verkhratsky et al., 2013; Burda and Sofroniew, 
2014; Verkhratsky et al., 2014d). In this essay, we 
shall present a concise overview of the general 
astrogliopathology and narrate the role of astrocytes 
in various forms of neurodegeneration.   

INTRODUCING ASTROCYTES

Neuroglia in the nervous system is represented 
by several types of peripheral glia (Schwann cells 
of the peripheral nerves, satellite cells of peripheral 
ganglia, enteric glia and olfactory ensheathing glia) 
and by glial cells of the central nervous system 
(CNS). The CNS glia is classified into microglia 
(cells of myeloid origin that enter the CNS very 
early in development and are responsible for innate 
immunity of the nervous tissue) and the macroglia 
represented by astroglia, oligodendroglia and NG2 
glia (Kettenmann and Ransom, 2013; Verkhratsky 
and Butt, 2013). Astrocytes, distributed throughout 
the grey and the white matter of the brain and the 
spinal cord are, arguably, the most heterogeneous 
(in form and function) type of neuroglia, providing 
for virtually every homeostatic need of the CNS. 
Astrocytes are highly heterogeneous in form and 
function; the main types of astroglial cells are (i) 
protoplasmic astrocytes of the grey matter; (ii) fibrous 
astrocytes of the white matter; (iii) radial glia of the 
embryonic CNS; (iv) “stem” astrocytes of neurogenic 
niches of the subvetricular and subgranular zones  
(v)v) vela astrocytes of the cerebellum; (vi) surface-
associated astrocytes, which  outline the cortical
surface in the posterior prefrontal and amygdaloid
cortices; (vii) interlaminar, polarized and varicose
projection astrocytes which are found only in the
brains of high primates and humans and functions
of which remain unknown; (viii) Müller glial cells
of the retina; (ix) Bergmann glial cells localised in
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function. These changes are observed in many chronic 
diseases and may co-exist with astroglial reactivity, 
i.e., in pathological tissue several population of
atrophic and reactive astrocytes may be present.
Astroglial atrophy and asthenia have been detected
in major neuropsychiatric, neurodevelopmental and
neurodegenerative diseases (Rossi et al., 2008; Staats
and Van Den Bosch, 2009; Verkhratsky et al., 2010;
Rajkowska and Stockmeier, 2013; Williams et al.,
2013; Verkhratsky et al., 2014c; Verkhratsky et al.,
2014b; Zeidan-Chulia et al., 2014). Alternatively
astroglial cells may undergo pathological remodelling
which changes their functional properties that may
contribute to pathological progression. Astroglial
atrophy and pathological remodelling decrease overall 
homoeostatic reserves in the CNS, and may result in
a reduced synaptic coverage and hence the weakening
of the synaptic transmission. Functional changes in
astroglia may reduce neuroprotection, whereas in
certain conditions astrocytes may secrete neurotoxic
factors hence contributing to neuronal damage.

Astrogliopathololgy can be primary or secondary. 
In many neurological disorders astrocytes represent 
the primary pathological target and underlie 
pathological progression. The primary genetic 
astrogliopathology is Alexander disease, in which 
astrocytes express sporadically mutated glial 
fibrillary acidic protein (GFAP); this leads to an 
early and profound leukomalacia (Messing et al., 
2012)), Astrocytes are primary targets in numerous 
toxic brain injuries, such as poisoning with heavy 
metals; these metals being accumulated by astroglia 
disrupt astrocytic glutamate uptake, resulting in 
excitotoxic neuronal damage (Verkhratsky et al., 
2013). Similarly, a profound inhibition of astroglial 
glutamate uptake lies at the core of neuronal death 
underlying Wernicke-Korsakoff encephalopathy 
(Hazell, 2009; Hazell et al., 2009). Astrocytes are 
also primary targets in hyperammoniemia (which 
is the main pathogenetic factor of acute and chronic 
hepatoencephalopathies); astrocytes accumulate 
ammonia which interferes with glutamine synthetase 
and profoundly disrupts astroglial homeostatic 
cascades responsible for K+, Na+, pH and Ca2+  
homeostasis and induces pathological secretion of 
glutamate from astroglia (Kelly et al., 2009; Haack 
et al., 2014; Liang et al., 2014; Montana et al., 2014). 
The inability of astrocytes to maintain a balance 

buffering system for reactive oxygen species, being 
the source of main anti-oxidants glutathione and 
ascorbic acid (for detailed account of astroglial 
functions and relevant references see (Iadecola and 
Nedergaard, 2007; Kriegstein and Alvarez-Buylla, 
2009; Kimelberg and Nedergaard, 2010; Zhang and 
Barres, 2010; Kirischuk et al., 2012; Nedergaard and 
Verkhratsky, 2012; Oberheim et al., 2012; Parpura 
and Verkhratsky, 2012; Clarke and Barres, 2013; 
Kettenmann and Ransom, 2013; Verkhratsky and 
Butt, 2013; Verkhratsky and Nedergaard, 2014; 
Verkhratsky et al., 2014a).      

INTRODUCING ASTROGLIOPATHOLOGY

The neurono-centric doctrine, which considers 
neurones as main substrates of neuropathology, 
dominates contemporary neurological thoughts 
and practices. It is universally acknowledged that 
neuronal damage or aberrant neuronal processes 
are both the causes and engines of neurological 
disorders. This point of view is in striking contrast 
with generalised observations indicating that the 
first and the only cells that respond to pathological 
insults with complex and disease-specific reactions 
are neuroglia.    

Above, neuroglial cells posses an evolutionary 
conserved defensive programme, the reactive gliosis, 
that encodes profound cellular metamorphosis in 
response to polyaetiological lesions of the CNS 
(Pekna and Pekny, 2012; Burda and Sofroniew, 
2014; Verkhratsky et al., 2014d). The reactive gliosis 
is represented by reactive astrogliosis, proliferative 
response of NG2 cells and the activation of microglia; 
all these processes being required in neuropathology. 
Reactive astrogliosis is a fundamentally survival 
event; it is a complex and multistage process aimed 
at neuroprotection and regeneration. Reactive 
astrocytes change their morphology, biochemistry 
and physiology in a disease-specific context 
(Zamanian et al., 2012); multiple phenotypes of 
activated astroglia are indispensable to contain the 
damage (for example by making the glial scar), and 
for post-lesion regeneration (Sofroniew and Vinters, 
2010; Pekna and Pekny, 2012; Burda and Sofroniew, 
2014; Pekny et al., 2014). 

Besides reactive response, astroglial cells may 
also undergo degeneration and atrophy with a loss of 
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reactive astrocytes and activated microglia. In many 
neurodegenerative disorders the synaptic weakness, 
synaptic loss and misbalance in neurotransmission 
develop at the early stages (Terry, 2000; Knight and 
Verkhratsky, 2010); later in the disease progression 
neurones die and the brain atrophy develops.  

NEUROGLIA IN NEURODEGENERATIVE 
DISEASES

Amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) also known 

as motor neurone disease or Lou Gehrig disease 
is a specific degeneration , with  death of motor 
neurones localised in the cortex, brain stem and 
spinal cord. Astrocytes are intimately associated 
with the development of ALS; reactive astrogliosis 
and astroglial degeneration with functional asthenia 
have been described.  At the early stages of the 
disease astrocytes undergo degeneration and many 
die through apoptosis; these degenerated astrocytes 
have a deficient glutamate transport, which 
arguably, contributes to glutamate excitotoxicity 
and neuronal death (Rossi and Volterra, 2009; Staats 
and Van Den Bosch, 2009). At later stages of ALS, 
dying neurones initiate astroglial reactivity; this, 
however, never results in the scar production. In 
animal models of ALS, in mice which expresses 
mutant human gene for superoxide dismutase 1 
(hSOD1 G93A),  astrodegeneration and astroglial 
death precede neuronal death and clinical 
symptoms (Rossi et al., 2008). Astrocytes in ALS 
animal models have a decreased expression of 
plasmalemmal glutamate transporters, whereas the 
genetic deletion of excitatory amino acid transporter 
2 (EAAT2, also known as GLT-1 in rodents) caused 
the death of motoneurones, thus, mimicking the ALS 
pathological evolution (Staats and Van Den Bosch, 
2009). Finally, selective silencing of the SOD1 
mutant gene expression in astrocytes significantly 
slowed the progression of the ALS in transgenic 
mice (Yamanaka et al., 2008; Wang et al., 2011). 

Human immunodeficiency virus-1 (HIV-1) associated 
dementia

HIV-1 infects microglial cells, which are the main 
CNS target. The activation of microglia by HIV-
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between synaptic and extra-synaptic glutamate is 
arguably a leading mechanism in addictive disorders 
(Scofield and Kalivas, 2014).    

Astrogliopathology often develops as a secondary 
process, being in essence a reaction to various 
lesions. Reactive astrogliosis is an example of this 
secondary astrogliopathology that is manifested in 
many neurological diseases such as neurotrauma, 
stroke, infection, or later stages of neurodegeneration 
(Heneka et al., 2010; Burda and Sofroniew, 2014; 
Pekny et al., 2014). Activation of astrocytes is a 
heterogeneous process which depends on the disease 
and produces many distinct phenotypes of activated 
cells. Reactive astrogliosis is fundamental for defining 
progression and resolution of neuropathology, and 
suppressing astroglial reactivity increases neuronal 
vulnerability, exacerbates pathological development 
and alters post-lesion regeneration (Burda and 
Sofroniew, 2014; Pekny et al., 2014). 

INTRODUCING NEURODEGENERATION

Neurodegenerative diseases, which afflict almost 
exclusively humans, are chronic neurological disorders 
that result in a progressive loss of function, structure 
and number of neural cells, ultimately resulting in the 
atrophy of the brain and profound cognitive deficits. 
The causes of neurodegenerative diseases are many 
and they may include  physical, chemical or infectious 
trauma, genetic predisposition, metabolic deficits 
or the combination of the above likely with some 
other, yet unidentified factors. Molecular and cellular 
mechanisms of neurodegeneration remains generally 
unknown; although certain mutant genes responsible 
for various forms of neurodegeneration have been 
identified, highlighting certain proteins that might be 
involved (Bekris et al., 2010; Bertram et al., 2010). 
Neurodegeneration is often associated with abnormal 
protein synthesis that results in an accumulation of 
pathological proteins either inside or outside the 
cells. These proteins are, for example, represented 
by β-amyloid or α-synuclein; extracellularly,  these 
pathological proteins are often aggregated and 
represent the cores of histopathological lesions known 
as senile plaques, Lewy bodies or Rosenthal fibres. 
These lesions are preferential for various diseases 
and have complex morphology which often includes 
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phosphorylation of tau protein (Braak et al., 1998; 
Armstrong, 2009).  The most popular contemporary 
hypothesis of AD pathogenesis emphasises the role 
of β-amyloid (the β-amyloid cascade hypothesis 
- (Korczyn, 2008; Karran et al., 2011), although
numerous clinical trials based on this hypothesis
had failed and criticism of ubiquitous pathological
significance of β-amyloid is mounting (Hardy, 2009;
Castellani et al., 2010; Castellani and Smith, 2011).

Astrocytes and β-amyloid
The question of whether astrocytes can participate 

in production and/or degradation of β-amyloid in the 
context of AD remains open. There were several 
reports indicating the ability of reactive astrocytes 
to accumulate and degrade β-amyloid (Guenette, 
2003; Nicoll and Weller, 2003), and β-amyloid was 
detected in astroglial cells from the entorhinal cortex 
of AD patients (Nagele et al., 2003), although it was 
rarely found in astrocytes from the triple transgenic 
model model of AD (3xtg-AD) (Olabarria et al., 
2010). Reactive astrocytes, in a different model of 
AD, the transgenic mice expressing mutant amyloid 
precursor protein (APP), were found to express the 
amyloid degrading enzyme neprilysin (Apelt et al., 
2003). At the same time the pathology may affect 
the ability of astrocytes to scavenge β-amyloid; 
active accumulation was found in cultured primary 
astrocytes isolated from healthy mice brain, while 
astrocytes isolated from mutant APP transgenic mice 
could not take up β-amyloid (Wyss-Coray et al., 
2003). 

Similarly obscure remains a possibility of 
astrocytes to produce β-amyloid. Normal, healthy 
astroglial cells do not express β-secretase and hence 
do not produce β-amyloid. When astrocytes were 
exposed to chronic stress, however, the expression 
of β-secretase was induced, endowing astrocytes 
with the β-amyloid producing capability (Rossner et 
al., 2005). Astroglial expression of β-secretase was 
detected also in various AD mice models (Rossner et 
al., 2001; Heneka et al., 2005).

Astrogliosis in AD
Reactive astrocytes (defined by the increased 

expression of GFAP and hypertrophic morphology) 
are often found in the post-mortem tissues from 

1 with subsequent secretion of pro-inflammatory 
and neurotoxic factors defines neuronal death and 
development of cognitive deficits characteristic for 
HIV-associated dementia (HAD) (Kaul and Lipton, 
2006).  In HAD, both astrodegeneration and reactive 
astrogliosis have been detected. A rather severe 
decrease in the number of astrocytes in HAD was 
identified in the basal ganglia, with a correlation 
between the progression of cognitive impairments 
and the degree of astroglial death (Thompson et al., 
2001). Reactive astrogliosis seems to be the most 
prominent in the entorhinal cortex and hippocampus 
(Vanzani et al., 2006).

Parkinson’s disease
Roles of astrocytes in Parkinson’s disease (PD) 

are poorly characterised. Experiments in vitro have 
demonstrated that astrocytes are important for 
protection and survival of dopaminergic neurones in 
vitro (Mena et al., 2002; Mena and Garcia de Yebenes, 
2008). Experiments in neuronal glial co-cultures 
also demonstrated that astrocytes convert L-DOPA, 
the dopamine precursor, to dopamine,(Mena et al., 
1996). Astrocytes are also important for dopamine 
metabolism and transport of dopamine and its 
precursors from the blood to the brain. Dopamine is 
transported into astrocytes by a large plasmalemmal 
neutral amino acids transporter encoded by the 
SLC7A5 gene. The dopamine precursors tyrosine and 
L-DOPA are taken from the blood by LAT1/4F2hc
complex, which is expressed in astroglia. Astrocytes
may also express functional dopamine transporter
DAT1/SLC6A3. L-DOPA has been shown to be
transported by an organic cation transporter 1, which
has also been identified in astrocytes. In the striatum,
astrocytes act as a reservoir for L-DOPA, which they
release to be subsequently transported to neurones
(Asanuma et al., 2014) (Asanuma et al., 2014).

Alzheimer’s disease
Alzheimer’s disease (AD), named so after 

Alois Alzheimer who described the first case of 
early familial form of dementia (Alzheimer, 1907), 
characterised by progressive dementia and specific 
histopathological lesions represented by senile 
plaques (extracellular depositions of β-amyloid) 
and interneuronal tangles resulting from abnormal 
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Fig. 2. 3xTg-AD confocal 3-dimensional reconstructed 
images labelled in green for GFAP and in red for Aβ (A-
D). It is evident that in either entorhinal cortex (A-B) or 
prefrontal cortex (C-D) independently of Aβ accumulation 
the majority of GFAP labelled astrocytes are atrophic 
and not reactive, which is different in the hippocampus 
(Fig. 1). In both cortices the presence of astrocytes is 
rarely associated with Aβ deposits either in plaques (A-
C) or blood vessels (B-D); astrocytes show clear atrophic 
signs (in B, asterisk). E-H) High magnification of normal 
astrocytes (E, G) compared to the atrophic ones (F, G) that 
appear in AD in entorhinal cortex (E-F) and prefrontal 
cortex (G-H). Modified and adapted from (Rodríguez et 
al., 2015;Verkhratsky et al., 2014c; Kulijewicz-Nawrot et 
al., 2012 and Yeh et al., 2011).

astroglial cells were found in association with 
plaques in animal models of AD (Verkhratsky et 
al., 2010). Hypertrophic GFAP-positive astroglial 
cells surrounding the plaques preserve their 

Fig. 1. Reactive astroglia in association with senile 
plaques in the hippocampus. A) Neuritic Aβ plaques (P 
in A) as seen and drawn by Alois Alzheimer (Alzheimer, 
1910); the plaque core (P1) is surrounded by activated 
glial cells (glz). B, C) Confocal images of β-amyloid 
(red) and reactive astrocytes (green) associated with 
senile plaques (B) and diffuse amyloid deposits (C) in the 
hippocampus of the 3xTg-AD animal model.   D) From 
the same preparation as shown in (C) confocal images of 
astrocytes in β-amyloid-free area; these astroglial profiles 
are atrophic when compared to controls and much smaller 
that reactive cells. E-H) High magnification of normal 
astrocytes (D, G) compared to the atrophic ones (F, H) 
that appear in AD within the hippocampal dentate gyrus 
(E-F) and CA1 region (G-H). Modified and adapted from  
(Rodríguez et al., 2015; Verkhratsky et al., 2014c).

AD patients, where they are usually associated with 
senile plaques (Beach and McGeer, 1988; Griffin 
et al., 1989; Meda et al., 2001; Mrak and Griffin, 
2005; Rodriguez et al., 2009). Similarly, reactive 
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of astroglia was quantified by decreased surface 
area and volume of GFAP/GS-positive profiles, 
decreased volume of cell somata, decreased number 
of primary processes and reduction in number of 
primary processes. The overall number of GFAP-
positive astrocytes, however, remained stable in the 
hippocampus, entorhinal and prefrontal cortices of 
AD mice at all ages (1 – 24 month of age) (Olabarria 
et al., 2010; Yeh et al., 2011; Kulijewicz-Nawrot et 
al., 2012). Rather similar atrophic morphology was 
observed in hippocampal astrocytes from another 
AD animal model, the mutant APP (PDAPP-J20) 
mice carrying the Swedish and Indiana APP human 
mutations (Beauquis et al., 2013). 

The timing of astroglial atrophy in the 3xTG-AD 
mice was region-dependent; significant reduction 
in astroglial  profiles was detected at very early 
stages  (at 1 months of age) in the entorhinal cortex, 
somewhat later in the prefronatal cortex (~ 6 months) 
and substantially later in the hippocampus (~9 – 
12 months) (Beauquis et al., 2013). In all regions, 
however, astroglial atrophy preceded an emergence 
of β-amyloid deposition and the formation of senile 
plaques. 

The atrophic morphology of astrocytes in 
the brains of 3xTG-AD animals may indicate a 
reduced astroglial coverage of the grey matter. 
Atrophic astrocytes, arguably, provide less synaptic 
coverage, which coincides with a decrease in 
astroglial homeostatic capacity. Astrodegeneration 
may also affect the neuro-vascular unit and could 
impact upon astroglia-dependent neuroprotection. 
Astrocytes are also critical for maintaining normal 
neurotransmission by supplying neurones with 
glutamine that is indispensable for glutamatergic 
and GABA-ergic pathways. This astroglial asthenia 
may trigger deficits in the synaptic strength and even 
contribute to a decrease in the number of active 
synapses which is observed at the early stages of 
AD (Terry, 2000). Astroglial atrophy may also affect 
the brain circulation, as the deficiency in the blood 
flow is a characteristic feature of AD (Bell and 
Zlokovic, 2009).  Astrocytes are central elements of 
neurovascular units that integrate neurones with local 
circulation. Astrocytes secrete various factors that 
mediate vasoconstriction and vasodilation by acting 
on pericytes or smooth muscle cells of arterioles; 
astrocytes also communicate with endothelial cells 

territorial domain, indicating the isomorphic, rather 
than anisomorphic  gliosis. Similarly, there are no 
signs of astroglial scar in the AD nervous tissue. 
Reactive astrocytes in AD animal models show 
aberrant physiology, manifested by spontaneous Ca2+ 
oscillations and abnormal intercellular Ca2+ waves 
(Kuchibhotla et al., 2009; Lim et al., 2014). There 
are indications for a direct link between β-amyloid, 
astroglial Ca2+ signalling and initiation of astrogliotic 
response. Exposure of primary hippocampal cultured 
astrocytes and astrocytes in organotypic hippocampal 
slice cultures to β-amyloid triggers Ca2+ oscillations, 
originating from intracellular Ca2+ release from 
the endoplasmic reticulum (ER) store, as well as 
astroglial reactivity. Inhibition of this β-amyloid-
induced Ca2+ release suppresses astrogliotic response 
(Alberdi et al., 2013). Importantly, astrogliotic 
response to β-amyloid and to AD-type pathology 
differed between brain regions. In 3xTG-AD mice 
(Oddo et al., 2003) the accumulation of β-amyloid 
triggered astrogliotic response in the hippocampus 
(Fig. 1.), but not in prefrontal or entorhinal cortices 
(Fig. 2.) (Olabarria et al., 2010; Yeh et al., 2011; 
Kulijewicz-Nawrot et al., 2012). This absence of 
astrogliotic response correlated with the absence of 
β-amyloid remodelling of Ca2+  signalling toolkits 
in the entorhinal astrocytes, which is in contrast to 
hippocampal astroglia where β-amyloid substantially 
up-regulated the expression of plasmalemmal  
glutamate metabotropic receptors and inositol 1,4,5 
trisphosphate receptors of the ER (Grolla et al., 
2013).       

Astroglial atrophy in AD
At the early stages the progression of the AD type 

pathology in genetic models of the disease involves 
astroglial atrophy. Recent studies of transgenic AD 
mice models revealed significant astrodegeneration 
that occurs at the early stages of AD progression 
and leads to an emergence of atrophic astrocytes 
(Olabarria et al., 2010; Yeh et al., 2011; Kulijewicz-
Nawrot et al., 2012; Beauquis et al., 2013), see also 
(Verkhratsky et al., 2014c). 

A reduction of GFAP-positive and glutamine 
synthetase (GS)-positive astroglial profiles have 
been found in various regions of the aforementioned 
3xTg-AD mice (Olabarria et al., 2010; Yeh et al., 
2011; Kulijewicz-Nawrot et al., 2012). Atrophy 
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et al., 2013), known as BACHD mouse (Gray et al., 
2008). Cultured  astrocytes, prepared from the cortex 
of BACHD mouse demonstrated an enhanced Ca2+-
dependent exocytotic release of glutamate, which 
appeared to be the result of an increased expression 
of pyruvate carboxylase, the critical enzyme for de 
novo synthesis of glutamate. Increase in glutamate 
synthesis stipulated and increased glutamate content 
in the exocytotic vesicles. In addition, astrocytes 
in a different HD mouse model show deficient 
K+ buffering which may further contribute to 
pathogenesis of the disease (Tong et al., 2014).

CONCLUSIONS

Neurodegenerative diseases are associated with 
substantial pathological changes in astroglial cells, 
which  surprisingly include both atrophic changes 
and reactivity, albeit in region- and time-dependent 
domain. These changes may decrease the homeostatic 
reserve of the CNS and contribute to evolution of 
pathology. Targeting astroglia in neurodegeneration 
may result in new therapeutic strategies aimed at 
preventing and delaying the disease progression.
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Mitochondria are intracellular membrane enclosed organelles found in most eukaryotic cells, 
which play important roles in several cellular functions, such as the production of energy by oxidative 
phosphorylation, the regulation of cellular calcium homeostasis, and the control of programmed cell 
death. The mitochondrial influx and efflux calcium pathways play a relevant role in cytosolic and 
mitochondrial calcium homeostasis and contribute to the regulation of mitochondrial functions. 
Furthermore, mitochondria are dynamic organelles that actively divide, fuse with one another, and 
undergo to regulated turnover, all of which are important for the maintenance of mitochondrial 
function and quality control. According to a widespread concept, neurons are critically dependent on 
mitochondrial integrity based on their specific morphological, biochemical, and physiological features. 
Indeed, neurons are characterized by high rates of metabolic activity and need to respond promptly 
to activity-dependent fluctuations in bioenergetic demand. The dimensions and polarity of neurons 
require efficient transport of mitochondria to hot spots of energy consumption, such as presynaptic 
and postsynaptic sites. Consequently, alterations in any of these mitochondrial features can potentially 
cause disease and have been linked to the pathogenesis of neurodegeneration. In this review particular 
emphasis will be devoted to the description of the role played by the newly identified mitochondrial 
proteins in the regulation of mitochondrial calcium dynamics as starting point for investigation of new 
molecular target responsible for mitochondrial dysfunctions leading to neuronal degeneration. 
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mitochondria, Ca2+ release from these organelles into 
the cytosol, and Ca2+ efflux through plasmalemmal 
Ca2+ transporters, namely, the ATPase Ca2+ pump 
and the Na+/Ca2+ exchanger. As recently proposed 
by Fernández-Morales and collaborators it is 
possible to envisage two “Ca2+ circuits” referred as 
neuronal Ca2+ cycling (NCC) and mitochondrial Ca2+ 
cycling (MCC) respectively (Fernández-Morales 
et al., 2012). These Ca2+ circuits serve to regulate 
important neuronal functions such as the synaptic 
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The calcium ion (Ca2+) acts as an ubiquitous 
intracellular messenger to regulate a plead of 
physiological functions. In excitable cells and 
particularly in neurons of the central nervous 
system, that are continuously exposed to firing 
action potentials at various frequencies, Ca2+ ions 
undergo an endless cycling of Ca2+ influx through 
plasmalemmal Ca2+ channels, intracellular buffering 
by Ca2+ binding proteins (CBPs) and organelles, 
such as the endoplasmic reticulum (ER) and 
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plasma membrane and endoplasmatic reticulum (ER) 
Ca2+-ATPases (Berridge et al., 2003; Grienberger 
and Konnerth, 2012), and the Ca2+-bindings proteins 
such as calbindin and parvalbulmin (Schwaller, 
2010). Finally, Ca2+ can also be transported into and 
released from mitochondria (Mattson, 2007). In the 
dopaminergic neurons of the SNpc, that have most of 
Ca2+channels opened much of the time, due to their 
pace making activity, for example, the magnitude 
of the Ca2+ influx appears to be much larger and the 
charge to the cell much greater compared to neurons 
in other different brain regions (Chan et al., 2010). 

Mechanisms of neuronal calcium cycling
Because of the slow kinetics of the plasma 

membrane transporters and considering their 
restriction to the cellular surface, Ca2+ entering 
neurons must be rapidly sequestered either in 
organelles lying below the plasma membrane or 
through ionic interactions with cytosolic buffering 
proteins before being extruded from the cell. It is well 
known that highly localized and transient high [Ca2+]c 
microdomains occurs underneath the plasmalemma, 
nearby the exocytotic machinery (Chad and Eckert, 
1984; Simon and Llinas, 1985; Neher, 1998a; Neher, 
1998b). The likelihood for generation of a high Ca2+ 
microdomain is strictly dependent by the opening of 
various Ca2+ channels upon action potential firing. 
These localized [Ca2+]c transients may also be 
favored by Ca2+-induced Ca2+ release (CICR) from 
the ER, through both ryanodine receptor (RyR) and 
inositol trisphosphate receptor (InsP3R) channels 
(Berridge et a., 2000). Furthermore, the formation 
of Ca2+ microdomains may also be favored by the 
subcellular disposition of ER, mitochondria, nucleus, 
secretory vesicles, or dendritic spines (Csordas et al., 
1999; Csordas and Hajnoczky, 2003; Rizzuto et al., 
1998; Szabadkai et al., 2003; Thomas et al., 1996). 
Thus, the Ca2+ signaling system is organized to favor 
the generation of large [Ca2+]c microdomains that are 
highly localized in space and time. Indeed, at each 
moment of cell activity, Ca2+ homeostasis is finely 
tuned by fluxes between three compartments: the 
extracellular milieu, the cytosol, and the Ca2+-storing 
organelles. At rest, these fluxes are small both at the 
plasma membrane and at ER membrane (Fernández-
Morales et al., 2012). Mitochondrial Ca2+ uptake 
through the uniporter (MCU) is very slow because 

release of neurotransmitters, or the respiration rate 
of mitochondria by Ca2+-dependent dehydrogenases, 
that couple bioenergetics through ATP synthesis to 
neuronal activity. Disruption of NCC and/or MCC 
will enhance the vulnerability of neurons to various 
stressors, leading to necrotic and/or apoptotic 
death of the vulnerable neurons as it occurs in 
neurodegenerative diseases and stroke.

Indeed, as above mentioned Ca2+ is the main second 
messenger that helps to transmit depolarization status 
and synaptic activity to the biochemical machinery 
of a neuron. In neurons, Ca2+ have multiple complex 
and integrated functions, including the control of 
dendritic responses to neurotransmitters, signalling to 
the nucleus to regulate gene expression, and initiation 
of neurotransmitter release from presynaptic axon 
terminals (Gleichmann and Mattson, 2011). By 
these ways Ca2+ plays a pivotal roles in controlling 
neuronal excitability. Moreover, Ca2+ functions as 
a key regulator of electrochemical signalling, not 
only within individual neurons, but also among 
large populations of neurons that comprise neuronal 
networks (Gleichmann and Mattson, 2011). 

The influx of Ca2+ through voltage-dependent and 
ligand-gated channels in the plasma membrane is a 
critical signal for the release of the neurotransmitters 
from presynaptic terminals and for the responses of 
the postsynaptic neuron (Mattson 2007). Glutamate, 
an excitatory neurotransmitter in the central nervous 
system, induces local and general increases of 
cytoplasmic Ca2+ through the activation of AMPA 
and NMDA receptors in the plasmamembrane, with 
consequent activation of voltage-dependent Ca2+ 

channels (VDCC) (Cali et al., 2011). In addition, 
the activation of metabotropic glutamate receptors 
coupled to the GTP-binding protein stimulates 
the release of inositol triphosphate (IP3), which 
activates Ca2+ channels in the endoplasmic reticulum 
(Mattson, 2007). The cost for extensive neuronal Ca2+ 

signalling is an increased energy demand because 
all the Ca2+ that enters in neurons must be removed 
from the cytoplasm by ATP-dependent membrane 
calcium pumps in order to maintain Ca2+ homeostasis 
(Gleichmann and Mattson, 2011). Moreover, Ca2+ is 
removed from the cytoplasm thank to the activity of 
the plasma membrane Na2+/Ca2+ Exchanger (NCX) 
(Blaustein and Lederer, 1999; Philipson and Nicoll, 
2000; Annunziato et al., 2004, Lytton, 2007) the 
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Rizzuto et al., 2004). Indeed, ER plays an important 
role in the maintenance of Ca2+ homeostasis into 
neurons due to its ability to store Ca2+ within the 
cell thank to its intralumial Ca2+ capacity of about 
0.5 mM. Ca2+ is pumped into the ER by sarcoplasmic 
endoplasmic reticulum Ca2+ ATPase (SERCA) and is 
extruded by IP3-RS and RyRs channels (Gleichmann 
and Mattson, 2011). Indeed, as this store fills up, Ca2+ 
triggers the opening of ER Ca2+ channels that let the 
Ca2+ flow back into the cytoplasm. These channels 
are often found in close apposition to mitochondria 
and their opening creates a region of high-local 
Ca2+ concentration that drives influx of Ca2+ into 
the matrix of mitochondria through Ca2+ uniporters 
(Rizzuto and Pozzan, 2006). The regulation of Ca2+ 

release from ER is responsible for many neuronal 
functions, from plasmalemmal excitability to 
synaptic plasticity. Together with mitochondria, ER 
forms junctions that support signal transduction and 
biosynthetic pathways and affect distribution of the 
organelles. These junctions have a pivotal role in 
mediating Ca2+ signal propagation to the mitochondria 
(Zundorf and Reiser, 2011). Ca2+ accumulation in the 
mitochondrial matrix again comes at an energetic 
cost, as it dissipates the electrochemical gradient 
created by respiratory metabolism along the electron 
transport chain (ETC). In fact, an important feature 
of the mitochondrial Ca2+ transport pathway is that 
this organelle contains low calcium in resting cells, 
but is able to accumulate large amounts of calcium in 
condition stimulating Ca2+ entry, and to release this 
calcium loaded during the recovery phase (Nicholls, 
2005). This is due to the ability of specific transporters 
localized on the inner mitochondrial membrane 
that allow calcium to cycle from mitochondrial 
matrix to the cytosol and from the cytosol to the 
mitochondrial matrix. Indeed, Ca2+ is removed from 
the matrix through the mitochondrial NCX (Kim and 
Matsuoka, 2008; Rizzuto and Pozzan, 2000), the Ca2+ 

proton exchanger (Williams and Fry, 1979), and the 
transient opening of the mitochondrial permeability 
transition pore (mPTP) (Hüser and Blatter, 1999). 
These events allow the maintenance of mitochondrial 
calcium concentrations within physiological range 
that are necessary for the neurons to adjust aerobic 
ATP production, to regulate synaptic transmission 
and excitability, to promote organelle dynamics 
and trafficking, to mediate signalling to nucleus, 

of its low Ca2+ affinity and its exponential kinetics 
(Patron et al., 2013). The [Ca2+]c at steady state 
is in the range of 10−7 M in the cytosol and in the 
mitochondrial matrix, and around 10−3 M at the 
extracellular milieu and at the ER lumen (Fernández-
Morales et al., 2012). At low stimulation conditions, 
the [Ca2+]c reaches the level of 10−6 M and clearance 
by the high-affinity Ca2+ pumps (plasma membrane and 
SERCA) dominates. At high stimulation rates, [Ca2+]i 
may reach levels high enough to stimulate transport 
through MCU. Under this condition, most of the Ca2+ 
load is taken up by mitochondria (Herrington et al., 
1996; Montero et al., 2000; Villalobos et al., 2002; 
Xu, et al., 1997). Ca2+ accumulated in mitochondria 
stimulates respiration and ATP synthesis (Gunter 
et al.,1994; Rizzuto et al., 2000). This may help 
to provide more extra energy for maintaining the 
exocytotic release of neurotransmitters under intense 
stimulation and to clear up the Ca2+ load, thus 
restoring cell homeostasis after the activity period 
of the neuron. Since high Ca2+ microdomains are 
particularly pronounced nearby the inner mouth 
of VDCCs, mitochondrial Ca2+ uptake could take 
place locally at these places during physiological 
stimulation. Therefore, it is possible to speculate that 
if the Ca2+ uptake properties of mitochondria could 
be modulated, this would be an effective strategy to 
regulate the exocytotic process and, hence, the release 
of neurotransmitters and synaptic plasticity. Thus, 
under pathological conditions, as well as, excitatory 
neurotoxicity, ischemia−reperfusion in stroke, 
aging, or neurodegenerative diseases, mitochondrial 
damage may reduce the ability of this compartment 
to take up Ca2+ leading to increased secretion of 
excitatory neurotransmitters and abnormal neuronal 
activation. These events trigger a vicious circle that 
in turn stimulate Ca2+-dependent processes driving 
the cells to necrosis or apoptosis.

Mechanisms of mitochondrial calcium cycling 
As above mentioned ER and mitochondria are the 

principal organelles involved in sequestering Ca2+ 

in neurons (Rizzuto and Pozzan, 2006; Verkhratsky, 
2005). In the last few years more attention has 
been devoted to the mechanisms responsible for 
calcium cycling between these two compartments 
in both physiological and in pathological conditions 
(Hajnoczky et al., 2000a; Hajnóczky et al. 2000b, 
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mechanisms, the intracellular Ca2+ concentration 
increases only transiently during normal physiological 
activity, with no adverse effects on the neurons. 
However, in pathological conditions, and in normal 
aging, the ability of neurons to control Ca2+ effluxes 
and to recover from a Ca2+ load is compromised 
(Mattson, 2007). Perturbations in calcium 
homeostasis are, indeed, the common denominator 
in several neurodegenerative disorders (Surmeier, 
2013). However, the molecular mechanisms 
responsible for the selective loss of neuronal 
population in the different neurodegenerative 

to control the generation of ROS, and to preserve 
neuronal survival (Nicholls, 2005; Starkov, 2002; 
Chinopoulos and Adam-Vizi, 2010; Duchen, 2004; 
Mattson et al., 2008). We recently demonstrate that 
the nuclear encoded NCX3 is the only isoform of 
the Na+/Ca2+-exchanger localized within the OMM, 
where it forms a stable complex with the Protein 
Kinase A Anchoring protein (AKAP121) and plays 
a relevant role in the control of mitochondrial Ca2+ 

homeostasis both under physiological and hypoxic 
conditions (Scorziello et al., 2013) (Fig.1).

Owing to the activation the above mentioned 

Fig. 1. Schematic representation of mitochondrial calcium influx and efflux pathways and potential druggable targets 
regulating mitochondrial calcium handling. Influx transporters: mitochondrial calcium uniporter (MCU); voltage-
dependent ion channel (VDAC). Efflux transporters: Na+/Ca2+ exchanger Li-dependent on the inner mitochondrial 
membrane (NCLX); Ca2+/H+ exchanger (NICE); permeability transition pore (PTP); Na+/Ca2+ exchanger on the outer 
mitochondrial membrane (NCX3). Ruthenium red: MCU inhibitor, CGP-37157 Diltiazem: NCLX and NCX3 inhibitor, 
and Cyclosporin A: PTP inhibitor. OMM outer mitochondrial membrane, IMM inner mitochondrial membrane, IMS 
intermembrane space, MATRIX mitochondrial matrix. 
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to their role as the cell powerhouse, have a key role 
in several other processes of major importance in 
cell physiology and pathology (Rasola and Bernardi, 
2007; Kroemer et al., 2007; McBride et al., 2006; 
Giacomello et al., 2007). Notably, great attention has 
been paid to the role of mitochondria in cell death and 
in neurodegeneration. Indeed, in the intrinsic pathway 
of apoptosis these organelles perform a pivotal role 
since they release a number of pro-apoptotic factors 
from the intermembrane space (IMS) responsible for 
caspase cascade activation (Kroemer et al., 2007; 
Galluzzi et al., 2009). The main mechanism leading 

disorders are less clear. We recently demonstrated 
that an interaction between ER and mitochondria 
occurs in neurons during ischemic preconditioning. 
This effect is mediated by NCX1 and NCX3 
activation and is responsible for neuroprotection 
observed in preconditioned neurons exposed to the 
subsequent OGD followed by reoxygenation (Sisalli 
et al., 2014).

Deregulation of neuronal calcium homeostasis and 
neurodegeneration

It has become clear that mitochondria, in addition 

Fig. 2. A) Mitochondrial calcium content measured in cortical neurons from ncx3+/+ and ncx3-/- mice brain exposed 
to Oxygen and Glucose Deprivation. Confocal images showing mitochondrial Ca2+ content measured by XRhod-1 probe 
(200nM, 15 minutes at RT, Fig 2A panels b, e, h, k) and cytosolic calcium concentration measured by Fluo 3 AM probe 
(5mM, 30 minutes at RT). Panels a–c: cortical ncx3+/+ neurons under control conditions (CTL); panels d–f:  ncx3+/+ 
neurons exposed to 3 hrs Oxygen and glucose deprivation (OGD). Panels g–i: cortical ncx3-/- neurons under control 
conditions (CTL); panels  j–l:  ncx3-/- neurons exposed to OGD. Scale bars: 1 mm. B) Mitochondrial membrane potential 
measured in cortical neurons from ncx3+/+ and ncx3-/- mice brain exposed to Oxygen and Glucose Deprivation. Confocal 
images showing mitochondrial membrane potential measured by TMRE probe (20nM, 30 minutes at RT in redistribution 
mode, Fig 2B panels b,e, h, k) and cytosolic calcium concentration measured by Fluo 3 AM probe (5μM, 30 minutes at 
RT). Panels a–c: cortical ncx3+/+ neurons under control conditions (CTL); panels d–f:  ncx3+/+ neurons exposed to 
3 hrs Oxygen and Glucose Deprivation (OGD). Panels g–i: cortical ncx3-/- neurons under control conditions (CTL); 
panels  j–l:  ncx3-/- neurons exposed to OGD. Scale bars: 1 mμ. 

FLUO3-AM FLUO3-AMXRhod1 MERGE MERGETMRE
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calcium handling, relevant for physiopathology is 
that mitochondria may function as cellular detectors 
for the apoptotic process. Indeed, as recently reported 
(Pinton et al., 2008; Pizzo et al., 2007) an increase 
in [Ca2+]m not toxic in itself because it increases the 
efficiency of ATP synthesis, if occurs synchronously 
with another toxic event, it may synergize with 
non toxic insult and in turn transforms a beneficial 
process into a death stimulus. This explanation 
justifies the emerging role of mitochondria as 
crucial players in the pathogenesis of many different 
diseases, both as primary or secondary executioners. 
From a pathological point of view, a cellular Ca2+ 
deregulation leading to mitochondrial Ca2+ overload 
and cell death through PTP opening followed by 
mitochondrial swelling has been described, as 
final step, for many neurodegenerative diseases 
(Panov et al., 2002; Sheehan et al., 1997; Sherer et 
al., 2002; Siklos et al., 1998). For instance, recent 
findings by Gandhi and co-workers reported that a 
impaired Ca2+ efflux from mitochondria through 
the mitochondrial Na+/Ca2+ exchanger occurs in 
neurons lacking PINK1, a serine threonine kinase 
implicated in autosomal recessive early-onset 
parkinsonism. This led to increased Ca2+ uptake 
capacity, decreased membrane potential, and 
increased ROS production, all conditions leading to 
early triggering of the PTP opening and concomitant 
neuronal death (Gandhi et al., 2009). The blockade 
of this final process is thus emerging as an effective 
therapeutic strategy also in vivo. In this regard, 
the genetic ablation or pharmacological inhibition 
of Cyp D, a main regulator of the PTP, has been 
shown to decrease the mitochondrial alterations 
and ameliorate the pathology both in the case of 
Collagen VI deficiency and in the Scgd-/- mouse, 
a model for severe dystrophia (Millay et al., 2008; 
Irwin et al., 2003). Interestingly, the genetic ablation 
of CypD substantially improves the cognitive 
abilities of a mouse model of AD and alleviates 
Aβ-mediated reduction of long-term potentiation 
(Du et al., 2008). Moreover, intra-mitochondrial Aβ 
was demonstrated to directly interact with CypD, 
thus providing a molecular basis for the pathogenic 
mechanism leading to neuronal degeneration in 
AD (Du et al., 2008). Mitochondrial Ca2+ overload 
appeared the decisive commitment step also in 
Huntington’s disease (Bezprozvanny et al., 2004). In 

to the release of pro-apoptotic factors in the cytosol 
is the formation of the “permeability transition 
pore,” also known as mitochondrial megachannel. 
Remarkably, its opening is favored by abnormal Ca2+ 
accumulation into mitochondria, especially when it 
occurs in concurrence with oxidative stress, high 
levels of phosphate and adenine nucleotide depletion 
(Rasola and Bernardi, 2007; Halestrap, 2009). The 
protein composition of PTP has been under debate 
until 2013 when it was discovered that dimers of 
mitochondrial ATP synthase form the permeability 
transition pore (Giorgio et al., 2013). Then it was also 
found that Cyp D interacts with the OSCP subunit of 
F-ATP synthase (Giorgio et al., 2013). Interestingly,
in cells from Cyp D KO mice, the genetic ablation of
Cyp D causes a delayed Cyclosporin A-insensitive
PTP activation in response to Ca2+ overload.
However, PTP opening triggered by stimuli other
than Ca2+ overload, is similar in wild type and Cyp
D or in KO cells, confirming that Cyp D plays a role
as regulator of mitochondrial PTP rather than as
structural constituent of this megachannel. (Baines et
al., 2005; Basso et al., 2005; De Marchi et al., 2006;
Nakagawa et al., 2005). Apoptosis is also modulated
by a number of proteins belonging to the Bcl-2
family, among which the classical pro-apoptotic
proteins Bax and Bak and the anti-apoptotic Bcl-
2 and Bcl-XL. These proteins reside in the ER,
cytosol and mitochondria as homo o heterodimers.
During apoptosis permeabilization of the OMM
causes the release from IMS of cytochrome c and
other proapoptotic factors. As far as concern the
mechanisms leading to OMM permeabilization,
apart PTP, a pivotal role is played by Bid (Rasola
and Bernardi, 2007; Upton et al., 2008). While Bid-
dependent OMM permeabilization is insensitive
to mitochondrial Ca2+, in many other situations the
apoptotic cascade and OMM permeability somehow
relies on mitochondrial Ca2+ overload. The concept
of mitochondrial Ca2+ overload, however, does not
necessarily refer solely to a large increase in [Ca2+]
m. Indeed, large, but short lasting, Ca2+ increases
in mitochondrial matrix may occur under several 
physiological conditions without detrimental 
consequences for cell survival; whereas, much 
smaller, but prolonged, increases of mitochondrial 
Ca2+ may activate the apoptotic machinery.

An interesting aspect of mitochondrial 
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and then inactivates the exchanger, whereas a rise 
in cytosolic [Ca2+] activates NCX and relieves the 
Na+-dependent inactivation (Hilgemann et al., 
1992a, b). Moreover, NCX is extremely sensitive to 
cytosolic acidification, redox status and metabolic 
state (DiPolo and Beauge, 1982, 2006; Doering and 
Lederer, 1994; Doering et al., 1996). These factors 
imply, in some cases, modifications of the exchange 
activity and, in others, alterations of the protein 
expression and docking into the membrane where, 
associated with other transporters such as Na+/K+-
ATPase and Na+/H+ exchanger as well as enzymes 
like kinases and phosphatases, they form functional 
supra molecular complexes (Bers and Despa, 2009; 
Schulze et al., 2003; Hilgemann, 2007; McLaughlin 
et al., 2002; Berberián et al., 2009).

The activity of NCX is important especially in 
some neurophysiological conditions. In fact, the level 
of expression of NCX in neurons is predominantly 
high in those sites where a large movement of Ca2+ 
ions occurs across the plasma membrane, as it 
happens at the level of synapses (Juhaszova et al., 
1996; Canitano et al., 2002). The Na+/Ca2+exchanger 
becomes the dominant Ca2+ extrusion mechanism 
when [Ca2+]i is higher than 500nM, as it happens 
when a train of action potentials reaches the nerve 
terminals. It has been calculated that for these [Ca2+]i 
values, more than 60% of Ca2+ extrusion is mediated 
by Na+/Ca2+exchanger families. In such physiological 
conditions, NCX activation is consistent with its low-
affinity (Kd 500nM) and high-capacity (5x103Ca2+/s) 
function. In contrast, in resting conditions or after a 
single action potential, when [Ca2+]i slightly increases, 
requiring, therefore, a more fine control, the high-
affinity (Kd100 nM) and low-capacity (102Ca2+/s) 
pump, the plasmamembrane Ca2+ATPase, assumes a 
predominant function, thus making the involvement 
of NCX less relevant (Blaustein and Lederer, 1999). 
On the other hand, dysregulation of [Ca2+]i and 
[Na+]i homeostasis is involved in neuronal injury 
occurring in in vitro and in vivo models of hypoxia-
anoxia and in several neurodegenerative diseases. 
More specifically, in the early phase of neuronal 
anoxic insult, the Na+/K+-ATPase blockade causes 
a increase of [Na+]i, which in turn induces NCX to 
reverse its mode of operation. Although during this 
phase NCX causes an increase in [Ca2+]i, its effect on 
neurons appears beneficial for two reasons. First, by 

line with this view, it has been shown that mutated, 
but not wild type, Htt induces PTP opening in 
isolated mitochondria (Choo et al., 2004) as well as 
a facilitated opening of PTP in permeabilized polyQ-
Htt expressing cells (Lim et al., 2008). Thus, also in 
this case PTP appears to be the final commitment 
step in a number of cellular stress conditions, with 
Ca2+ acting as a potent sensitizing factor (Lim et al., 
2008).

THE SODIUM CALCIUM EXCHANGER

The Na+/Ca2+ exchanger (NCX) represents 
a major transporter assuring Ca2+ efflux from 
mammalian cells (Blaustein and Lederer, 1999). 
Under physiologic conditions NCX provides the 
exchange of 3Na+/1Ca2+ between cytoplasm and 
extracellular medium. In most tissues, it operates in 
a “forward” way corresponding to inward current 
and thus to calcium exit from the cell (Blaustein and 
Lederer, 1999). Under some conditions, however, a 
reverse mode of Na+/Ca2+ exchange can be activated 
coupling the extrusion of three Na+ ions with the 
influx of one Ca2+ ion (Blaustein and Lederer, 1999; 
Philipson and Nicoll, 2000; Annunziato et al., 2004).

NCX belongs to a multigene family comprising 
three isoforms, named NCX1, NCX2, and NCX3. 
To fulfill the physiological demands of various cell 
types, the NCX isoforms and their splice variants 
are expressed in a tissue-specific manner (Philipson 
and Nicoll, 2000; Lytton, 2007; Khananshvili, 
2012). NCX1 is ubiquitously expressed in all tissues, 
NCX2 is mainly restricted to the brain, and NCX3 is 
expressed exclusively in brain and skeletal muscles 
(Quednau et al., 1997). In addition, NCX1 and NCX3 
give rise to several splicing variants that appear to be 
selectively expressed in different regions and cellular 
populations of the brain (Quednau et al., 1997; Yu 
and Colvin, 1997). In fact, NCX1 mRNA can be 
detected in midbrain and in basal ganglia in which 
dopaminergic cell bodies are localized. Moreover, 
NCX1 protein isoform is present in the striatum, 
where the terminal projection fields of dopaminergic 
nigrostriatal neurons were found (Canitano et al., 
2002; Papa et al., 2003). Several factors are involved 
in the regulation of NCX activity. Among them, the 
two transported ions Na+ and Ca2+ play a crucial role. 
Indeed, a rise in cytosolic [Na+] rapidly stimulates 
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In this sense, during aging and also during 
neurodegenerative diseases, such as Alzheimer’s 
disease and Parkinson’s disease in which a neuronal 
calcium dysfunction occurs, NCX might play a 
relevant role. In fact, a study performed in the 
synaptic terminals obtained from the brain cortex 
of AD patients (Colvin et al., 1994) or in neurons 
treated with beta amyloid (Pannaccione et al., 2012) 
showed that NCX activity was increased. 

mNCX AND NEURODEGENERATION

The role played by mNCX in neurodegeneration 
has been object of extensive investigation in the 
last few years (Palty et al., 2010; Celsi et al., 2013; 
Scorziello et al., 2013). It has been reported that 
during Parkinson’s disease the activation of mNCX
is the primary mechanism by which mitochondrial 
calcium concentrations ([Ca2+]m) is returned to the 
cytoplasm and therefore it is critical to a multitude of 
Ca2+-dependent processes including neurotransmitter 
release, synaptic plasticity, bioenergetics and 
mitochondrial NO and free radical generation 
(Castaldo et al., 2009). Recently, it was found that in 
the absence of PINK1, mNCX

 
activity was severely 

impaired, leading to mitochondrial calcium overload, 
permeability transition pore opening and cell death 
(Gandhi et al., 2009). Moreover, a recent study 
performed in human dopaminergic neurons showed 
that the plasmalemal NCX2 and NCX3 contribute 
to mitochondrial Na+ and Ca2+ exchange and may 
act downstream of PINK1 in the prevention of 
neurodegeneration by [Ca2+]m accumulation (Wood-
Kaczmar et al., 2013). Furthermore, experiments 
performed in primary midbrain neurons obtained 
from A53T transgenic mice embryos showed 
that among the three isoforms of NCX, NCX3 
is the only one whose expression was reduced. In 
these cells cytosolic calcium concentration was 
increased. Interestingly, a significant mitochondrial 
hyperpolarisation was observed in midbrain neurons 
obtained from A53T transgenic mice accompanied 
by a sustained increase in mitochondrial calcium 
content (personal unpublished observation).

Furthermore, the NCX3 isoform, which is 
selectively expressed in the brain and skeletal 
muscle (Papa et al., 2003), plays a fundamental 
role in buffering intracellular Ca2+ and Na+ overload 

promoting Ca2+ influx, NCX promotes Ca2+ refilling 
into the ER, which is depleted by anoxia followed 
by reoxygenation, thus allowing neurons to delay ER 
stress (Sirabella et al., 2009). Second, by eliciting 
the decrease in [Na+]i overload, NCX prevents 
cell swelling and death (Annunziato et al., 2007). 
Conversely, in the later phase of neuronal anoxia, 
when [Ca2+]i overload takes place, the NCX forward 
mode of operation contributes to the lowering of 
[Ca2+]i, thus protecting neurons from [Ca2+]i-induced 
neurotoxicity (Annunziato et al., 2004). Interestingly, 
in the last few years our laboratory gave an important 
contribution to the understanding of the differences in 
the functional properties of each of the three isofoms 
of NCX as well as to their differential subcellular 
distribution (Secondo et al., 2007; Scorziello et 
al., 2013). Indeed, it has been demonstrated that 
NCX1 and NCX2 are more sensitive to changes 
in ATP since NCX1 and NCX2 forward mode of 
operation is impaired by ATP depletion. Conversely, 
the functional properties of NCX3 are not affected 
by ATP depletion. These findings are consistent 
with the differential distribution of NCX3 in the 
brain (Canitano et al., 2002; Papa et al., 2003), as 
well as with its subcellular localization not only 
at plasmamembrane level but also on the outer 
mitochondrial membrane (Scorziello et al., 2013). 
Moreover, these finding let to hypothesize that each 
of the three isoforms might play a different role in the 
pathogenesis of a cellular damage (Secondo et al., 
2007; Bano et al., 2005). In line with this hypothesis 
the treatment of ischemic rats with NCX1 or NCX3 
antisense correlates with a remarkable enlargement 
of the infarct volume (Pignataro et al., 2004) thus 
suggesting a crucial role of these two isoforms in the 
pathogenesis of ischemic damage.

It is also demonstrated that NCX plays an 
important role during aging, since the impairment 
of Ca2+homeostasis in neuronal cells is considered 
to be the major triggering event that leads to the 
development of brain aging (Canzoniero et al., 1992). 
Studies performed on the cerebro-cortex nerve 
endings of aged rats have shown that the activity 
of NCX is markedly reduced in the forward and in 
the reverse mode of action (Michaelis et al., 1984; 
Canzoniero et al., 1992). NCX functional decline 
seems to be the consequence of a reduced affinity of 
the antiporter for Ca2+ions (Michaelis et al., 1984). 
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REGULATION OF MITOCHONDRIAL 
CALCIUM CYCLING AS NEW STRATEGY TO 

DEVELOP NEUROPROTECTIVE COMPOUNDS

As above largely described mitochondrial 
dysfunction and alterations of Ca2+ homeostasis 
has long been implicated in the pathogenesis of 
neurodegenerative illnesses such as AD (Mattson, 
2007), PD (Yao et al., 2009), ALS (von Lewinski and. 
Keller, 2005; Grosskreutz et al., 2010) or HD (Damiano 
et al.,2010; Oliveira, 2010; Quintanilla and Johnson, 
2009) and cerebral ischemia (Scorziello et al., 2013; 
Sisalli et al., 2014). Despite extensive research into 
the causes of these diseases, clinical researchers have 
had very limited progress and, there is still no cure for 
any of these diseases. One of the main obstacles in 
the way of creating treatments for these disorders is 
the fact that their etiology and pathophysiology still 
remain unclear. In this regard, the preservation of the 
mitochondrial proton gradient represents an optimal 
upstream target to counteract irreversible apoptosis 
occurring in neurodegeneration. Indeed, strategies 
targeting the mPTP and its regulation by CypD have 
been shown to confer significant protection in hearts 
(Griffiths et al., 1993) or brains (Camara et al., 2010). 
Moreover, the administration of cyclosporine, which 
is able to inhibit CypD, during percutaneous coronary 
intervention reduced infarct size in a cohort of patients 
(Piot et al., 2008). Unfortunately cyclosporine 
causes immunosuppression and nephrotoxicity and 
the benefits of mPTP inhibition are balanced by its 
adverse effects since, the loss of mPTP mediated-Ca2+ 
efflux increases mitochondrial Ca2+ content in the 
matrix (Di Lisa et al., 2010; Elrod et al., 2010). On the 
other hand, inhibition of mitochondrial Ca2+ uptake, 
is expected to reduce the long-lasting mitochondrial 
calcium elevations that occur during ischemia and to 
prevent PTP opening. Therefore, the MCU is a further 
key target since drugs that inhibit this Ca2+ uptake 
system should retain the beneficial effects conferred 
by mPTP inhibition but not its adverse effects. 
Accordingly, inhibition of the MCU by ruthenium 
red protects hearts against ischemic injury (Miyamae 
et al., 1996). Unfortunately ruthenium red is a very 
unspecific inhibitor that also inhibit several classes of 
ion channels and that interfere with the binding of Ca2+ 
to calmodulin (Santo-Domingo et al., 2010). However, 
the molecular identification of the MCU as a forthy 

occurring not only under physiological conditions 
but also in pathophysiological conditions such as 
ischemia (Condrescu et al., 1995; Linck et al., 1998; 
Secondo et al., 2007). Indeed, neurons silenced with 
siRNA-NCX3 or derived from ncx3-/- mice display 
a remarkable vulnerability in both in vivo and in 
vitro hypoxic conditions (Pignataro et al., 2004; 
Molinaro et al., 2008). These findings suggest that 
NCX-induced buffering of Ca2+ overload during 
exposure of neurons to hypoxic conditions may 
exert a neuroprotective function. Interestingly, we 
demonstrated that the exposure of wt neurons to OGD 
caused an increase in mitochondrial calcium content, 
whereas, it returned to values comparable to control 
during reoxygenation (Scorziello et al., 2013) (Fig 
2A). In these experimental conditions mitochondrial 
inner membrane is depolarized in wt neurons exposed 
to OGD (Fig 2B). These experimental conditions 
correlated with changes in the expression of mNCX3  
which decreased in OGD and returned to the basal 
level during the reoxygenation phase (Sirabella et al., 
2009). Moreover, mitochondrial calcium content in 
ncx3-/- neurons is higher compared to that measured 
in wt neurons (Fig 2A). 

We recently demonstrated that neurons treated 
with Aβ1–42 showed an upregulation of NCX3 
activity that promoted ER Ca2+ refilling, thus helping 
neurons to mitigate ER stress and thus delaying 
neuronal death (Pannaccione et al., 2012). Since it 
is known that mitochondria associate with ER and 
their networks are important for the maintenance of 
calcium homeostasis (Raturi and Simmen, 2013) it 
is possible to speculate that the increased activity of 
mNCX3 might contribute to effect above described. 
This hypothesis is in line with the findings observed 
in preconditioned neurons exposed to OGD/
Reoxygenation (Sisalli et al., 2014). The exposure of 
cortical neurons to a sublethal hypoxic insult caused 
an increase in NCX3 expression and a reduction 
in mitochondrial calcium content in comparison 
with neurons exposed to OGD/Reoxygenation. 
Interestingly, in these conditions the ER calcium 
content is increased compared with untreated 
neurons. Collectively, these findings strongly support 
the hypothesis that mNCX3 might play a key role in 
the regulation of mitochondrial calcium homeostasis 
thus representing a new promising pharmacological 
target in neurodegenerative diseases and ischemia.
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to approach their treatment from different angles, 
as well as environmental factors, oxidative stress, 
and mitochondrial dysfunction, including ER and 
mitochondrial interaction. Considering that these 
diseases are devastating not only due to their 
economic impact on the society in terms of costs 
of healthcare and loss of productivity, but also 
because they literarily deprive individuals from its 
identity, it is important to search for new targets 
that may be pharmacologically engaged, to curtail 
the progress of neurodegeneration. Indeed, despite 
societies around the world invest billions of dollars 
in the search for drugs that would stop, or at least 
significantly slow-down neurodegeneration, the 
results are unsatisfactory at best. Thus, compounds 
acting on specific disease proteins and pathways 
such as dysregulation of neuronal and mitochondrial 
Ca2+ cycling, and impairment of mitochondrial 
bioenergetics, could be more efficacious to rescue 
vulnerable neurons from death in neurodegenerative 
diseases. In this regard, the molecular identification 
of NCLX and NCX as proteins able to regulate 
mitochondrial Na+/Ca2+ exchange might result 
as new promising targets for the development of 
therapeutic strategies aimed to prevent mitochondrial 
dysfunction occurring during ischemia and 
neurodegenerative diseases. However, further efforts 
have to be performed to improve the knowledge on 
the functional properties of these transporters in order 
to finely tune their activity to preserve mitochondrial 
function during neurodegeneration.
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Changes in the intracellular and extracellular concentration of several ion species have been shown to 
occur and to play a critical role in specific neurodegenerative diseases, and hyperactivation of glutamate 
receptors (excitotoxicity) appears as a primary mechanism for neuronal death occurring upon exposure 
to neurodegenerative stimuli. A large number of potassium channels are expressed in distinct neuronal 
type, each with specific biophysical, functional, and pharmacological properties; despite their role in 
controlling neuronal excitability has been widely explored, much less attention has been dedicated 
to investigating their participation in neuronal survival/death mechanisms. Therefore, the aim of the 
present work is to review the available preclinical data on potassium channels contribution in cell death 
triggered by various neurotoxic insults, and to provide explanations reconciling apparently contradictory 
conclusions present in the literature. Given that several new potassium channel modulators are currently 
being developed for the treatment of various neurological and non-neurological indications, it seems 
possible to envisage that these molecules may be optimized for the treatment of various neurodegenerative 
diseases where potassium channels specifically participate in disease pathogenesis. 

The disruption of ionic homeostasis is a key 
trigger for neuronal injury and death occurring during 
exposure to several neurotoxic stimuli, including 
hypoxic/ischemic conditions (Chao and Xia, 2010), 
Alzheimer’s disease Aβ fragments (Fraser et al., 
1997), and prion-induced neurodegenerative processes 
(Biasini et al., 2013). In all these neurodegenerative 
disorders, a unifying hypotheses for neuronal 
death is the hyperactivation of glutamate receptors 
(excitotoxicity), leading to excessive stimulation of 
both NMDA and non-NMDA receptors, excessive 
calcium (Ca2+) influx along with sodium (Na+) and 
chloride (Cl-) accumulation which disrupts the 
osmotic equilibrium resulting in cell lysis, one of the 
major contributing factor in neuronal death (Mehta 
et al., 2013). However, recent work has increasingly 

suggested that several other processes, in addition 
to excessive glutamate receptors activation, may 
contribute to a loss of ionic homeostasis, cellular 
energy failure, and Ca2+ accumulation during ischemia 
(Besancon et al., 2008). In the present review, we will 
concentrate on the relationship between the disruption 
of potassium (K+) homeostasis and neuronal death. In 
comparison with the well-established harmful role of 
Ca2+ and Na+ overload, the role of K+ efflux appears 
to be much more complex. In fact, on one side the 
enhanced efflux of K+ ions is classically considered an 
adaptive mechanism to decrease neuronal excitability 
during hypoxia/ischemia; on the other hand, recent 
evidence suggests that an excessive loss of cellular K+ 
is causally linked to neuronal damage and apoptotic 
neuronal death in various conditions including 
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of these genes has allowed to classify K+ channels 
on the basis of the presumed topology of their 
protein products deduced from primary sequences. 
As illustrated in Fig. 1, subunits belonging to three 
classes can have K+ channel function: 1) the classical 
family with 6 transmembrane segments (6TM); 
voltage-gated  K+ channels (Kv channels; Kv1-Kv12) 
belong to this family. Segments S1-S4 form the voltage 
sensor domain (VSD); four to seven positively 
charged arginines, each separated by 2-3 mostly 
uncharged residues, in the S4 segment play a critical 
role in voltage sensing. On the other hand, S5, S6, and 
the intervening linker contribute to the formation 
of the pore; within this region, a canonical GYGD 
sequence forms the K+ selectivity filter. 2) the 2 
transmembrane segment family (2TM), homologous 
to the S5-S6 segments of Kv channels. As the VSD 
is missing, channels formed by these subunits are 
voltage-independent; inward-rectifier channels (both 
constitutively-active and G-protein-gated) belong 
to this group, which is formed by at least seven 
gene families (KIR1-KIR7); 3) the 4 transmembrane 
segment family (4TM), formed by subunits encoded 
by at least 15 different genes (K2P1-K2P17). While 
channels formed by subunits of the first two groups 
are tetrameric, those of the third group are dimers. 
However, it should be reminded that the structural 
and functional heterogeneity of K+ channel is not 
restricted to the three structural groups mentioned so 
far; as an example, large conductance Ca2+-dependent 
K+ channels (BK channels) assemble as tetramers 
of subunits containing seven transmembrane 
segments, which differ from Kv subunits for the 
presence of an extra transmembrane segment (S0) 
at the N-terminus. Except in BK channels, both the 
N- and the C-terminal regions in other K+ channels 
are located intracellularly; at these locations, sites 
determining homomeric and heteromeric assembly, 
interaction with regulatory molecules, subcellular 
localization, and binding of accessory proteins have 
been identified.

Plasma membrane mechanisms contributing to ionic 
homeostasis 

In normal conditions, ions are not uniformly 
distributed between extracellular and intracellular 
milieu of neurons. Rather, a steep electrochemical 
gradient across the plasma membrane exists for most 

hypoxia/ischemia (Yu et al., 1997; Huang et al., 2001; 
Liu et al., 2003; Zhao et al., 2006; Nistico et al., 2007; 
Karki et al., 2007; Chao and Xia, 2010). We will 
briefly review the experimental evidence suggesting 
a possible neuroprotective/neurodegenerative role 
for various classes of K+ channels, concentrating in 
particular on voltage-gated K+ channels of the Kv7 
subfamily, which have recently gained a center-
stage role in neuronal excitability control, etiology of 
several human epileptic diseases, and as targets for 
treatment of neuronal hyperexcitability disease states.  

FUNCTIONAL AND STRUCTURAL ROLES OF 
K+ CHANNELS

K+ channels perform an extraordinary array of 
functional roles

K+ channels are the largest and the most 
functionally heterogeneous class of ion channels; 
they are expressed in all eukaryotic cells and in 
prokaryotes. K+ channels mostly perform inhibitory 
functions by a membrane-stabilizing action; their 
opening drives the membrane potential closer to 
the K+ equilibrium potential, away from the action 
potential threshold in excitable cells. Moreover, 
activation of K+ channels shortens the duration of 
the action potential, terminates periods of intense 
electrical activity, reduces neuronal firing frequency, 
and, in general terms, decreases the efficacy of cell 
excitatory inputs. Beside these roles, K+ channels 
participate in solute transport across epithelial 
membranes, and to glial cells K+ clearance from 
brain interstitial spaces. Such an extraordinary 
heterogeneity of functions in each cell type at various 
differentiation stages is accomplished through the 
expression of a specific pattern of K+ currents, each 
with distinct sub-cellular localization, biophysical 
properties, modulation, and pharmacological profile. 
In fact, electrophysiological studies in a variety 
of cellular models have revealed an astonishing 
functional diversity of the K+ current family, often 
anticipating the remarkable genetic and structural 
heterogeneity of K+ channels (Wulff et al., 2009).

K+ channels are complexes of subunits with 2, 4, or 6 
transmembrane segments.

More than 70 genes encoding for K+ channels 
have been identified in humans. Molecular cloning 
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a small range during normal neuronal activity, 
an indication of the paramount importance of 
such functional processes for the maintenance of 
membrane potential, generation of action potential, 
synaptic transmission, electrogenic transport of 
neurotransmitters and neuronal plasticity, but also 
for regulating osmotic balance, cell volume, proper 
pH and ionic microenvironment for the normal 
functioning of macromolecules including enzymes, 
Na+-coupled transport of nutrients into cells (Chao 
and Xia, 2010). Since a plethora of neuronal 
functions is critically dependent on the maintenance 
of Na+, K+, Ca2+ and Cl- transmembrane distribution, 
deregulated ionic balances as well as loss of ion 
gradients are considered to be key events in brain 
pathological conditions (Yu and Choi, 2000).

K+ homeostasis and neurodegeneration
One of the first consequence following an 

impairment of energy metabolism in the brain is 
a change in transmembrane ion gradients, thus 
overcoming the homeostatic mechanisms that 
maintain constant ionic concentrations in the 
cerebrospinal fluid and neurons. Hypoxia, ischemia, 
oxygen-glucose deprivation (OGD), and other 
neurodegenerative triggers can promote sustained 
changes in ionic concentrations; these are mostly  
characterized by enhanced K+ efflux and Na+-, Ca2+- 
and Cl- influx. Among these ion species, K+ seems 
to play a primary role in the regulation of neuronal 
cell death/survival. Indeed, while a growing number 
of evidence demonstrates that low intracellular 
K+ levels ([K+]i) lead to apoptosis in neurons, a 
decreased expression/function of some subclasses of 
K+ channels, by causing neuronal hyper-excitability, 
appears sufficient to promote apoptotic neuronal 
death (Shah and Aizenman, 2014). In this view, K+ 
channels-activating drugs, by reducing neuronal 
excitability and subsequent energy loss, might 
represent a useful tool to prevent neuronal cell death. 

K+ Efflux and Apoptotic Cell Death
Apoptotic cell death contributes significantly 

to the neuronal loss observed in a number of 
neurological disorders, including Alzheimer’s 
disease and stroke (Thompson, 1995). DNA 
fragmentation, mitochondrial damage, and caspase 
activation are the main features of apoptotic cell 

of them, with the extracellular fluid being rich in Na+ 
(concentrations up to 150 mM) and relatively poor 
in K+ (around 3 mM). Conversely, the intracellular 
concentrations of these two ions are reversed, with 
up to 150 mM K+ and 4-12 mM Na+. Ca2+ and Cl- 
are also asymmetrically distributed, with high levels 
in the extracellular space. Both active and passive  
transport mechanisms contribute to the maintenance 
of this steep electrochemical ionic gradient across 
the membrane. Passive processes transport ions from 
high to low electrochemical gradient. Two types of 
proteins are responsible for passive ion transport: 
facilitated transporters and ion channels, with very 
different transport mechanisms. Substrate binding to 
the transporter on one side of the membrane induces 
a conformational change exposing the substrate to 
the opposite side of the membrane. The substrate 
concentration gradient provides the energy required 
for such a process; as the substrate movement is 
coupled to protein conformational changes, transport 
rate is rather low. On the other hand, ion channel 
allow permeating ion transport through aqueous 
pores within the protein itself at very high rates (>106 
ions/s, closer to the diffusion rate in water), thus 
generating significant currents which may rapidly 
change the resting membrane potential (VREST) of 
a cell. Both these passive processes dissipate the 
energy gradient established by the active transporters, 
which pump ions through the membrane against their 
concentration gradient; this process requires an energy 
input generally provided by ATP hydrolysis (primary 
active transporters) or by coupling the net flux of 
the solute transported against the electrochemical 
gradient to that of another which moves following 
its electrochemical gradient (secondary active 
transporters); under this condition, the two solutes 
can be transported in the same (“cotransporter” or 
“synporter”) or in the opposite (“counter-transporter” 
or “antiporter”) direction. The electrogenic Na+-K+ 
ATPase (also called Na+–K+ pump or Na+ pump) 
is the primary active transporter which functions 
to actively extrude three Na+ outside the cell, and 
move two K+ into the cell in each cycle of activity, 
thereby maintaining the high intracellular K+ and 
low intracellular Na+ concentrations (Jorgensen et al., 
2003; Panayiotidis et al., 2006). The concentrations 
of ions are in dynamic balance under physiological 
conditions, and they only transiently fluctuate within 
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extracellular K+ also protects neurons from apoptosis 
induced by oxidants, staurosporine, glutamate, 
ceramide, neurotoxic amyloid-β (Aβ) peptides, and 
serum deprivation. In keeping with a pro-apoptotic 
role for intracellular K+ loss is the observation that 
several K+ channel blockers attenuate apoptotic 
signalling cascades and cell death in neurons 
(Leung, 2010). Moreover, several lines of evidence 
suggest that neuroprotection induced by high 
extracellular K+ and by K+ channel blockers such as 
tetraethylammonium (TEA) is not a consequence of 
an enhanced activity of voltage-gated Ca2+ channel 
caused by membrane depolarization, as Ca2+ channel 
blockers do not abrogate their neuroprotective 
effects. 

Several studies have been carried out to 
discover the molecular identity of the K+ channel 
subtypes responsible for the enhanced K+ efflux 
accompanying neuronal apoptosis. Although it 
appears that A-type voltage-gated K+ channels, Ca2+-
activated K+ channels, KATP channels, Na+-dependent 
K+ channels, and two-pores TASK channels are 
involved in the modulation of damage of specific 
neuronal populations during exposure to distinct 
neurotoxic stimuli, the contribution of TEA-sensitive 
delayed rectifier-type voltage-gated K+ channels of 
the Kv2.1 subfamily has by far received the largest 
attention (reviewed in Misonou and Trimmer, 
2009). Kv2.1, the predominant mediator of delayed 
rectifying K+ currents in neurons, has been identified 
as the critical contributor to the intracellular K+ loss 
associated with apoptosis in cortical, hippocampal, 
and cerebellar granule neurons. Activation of Kv2.1 
currents has been demonstrated during neuronal 
treatment with oxidants, such as DTDP, which 
induces an intracellular release of zinc (Zn2+) from 
metal-binding proteins, enhancing plasma membrane 
delivery of Kv2.1 channels, and amplifying Kv2.1 
K+ currents, thus producing a “pro-apoptotic” 
intracellular environment (Sensi et al., 2011). These 
pro-apoptotic Kv2.1 channels appear to be expressed 
in highly-clustered structures in the plasma 
membrane and to be activated at rather positive 
values of membrane potential. In contrast, neuronal 
activity or sublethal ischemia stimulates Kv2.1 
channel dephosphorylation-dependent declustering, 
which, along with hyperpolarizing voltage-gated 
activation, induces neuronal tolerance to ischemic or 

death; irrespective of stimulus type, apoptotic 
cells also display a reduced cell volume, termed 
apoptotic volume decrease (AVD), and decreased 
intracellular ionic strength (Bortner et al., 1997). The 
loss of cellular K+, originally considered as a side-
effect of the apoptotic process, has progressively 
gained a pathogenetic role in this process because 
of the following landmark observations (brilliantly 
reviewed in Shah and Aizenman, 2014): 1. Key 
apoptotic enzymes such as caspase-3 and nucleases 
are inhibited by physiological intracellular 
concentrations of K+ ions. Although this observation 
was first made in lymphocytes (Hughes et al., 
1997), in neurons exposed to serum deprivation, 
low [K+]i promoted the DNA binding activity of p53 
and Forkhead, proapoptotic transcriptional factors, 
whereas it inhibited that of cAMP-responsive 
element-binding protein, an anti-apoptotic 
transcriptional factor (Yang et al., 2006). This 
evidence strongly indicates that reduced intracellular 
K+ concentrations provide a permissive environment 
for apoptotic signalling cascades; 2. Apoptotic 
stimuli enhance the loss of intracellular K+. Reduced 
K+ concentrations are observed in cortical neurons 
following serum deprivation (Yu et al., 1997). 
Among the potential mechanisms contributing to 
the observed  intracellular K+ loss during apoptotic 
stimuli (such as those occurring during and after 
cerebral hypoxia/ischemia), a reduced recovery 
of extracellular K+ mainly mediated by the Na+-K+ 
ATPase, or an increased leakage of K+ due to an 
increased activity of various classes of K+ channels 
(e.g. voltage-gated K+ channels, ATP-sensitive 
K+ channels, Ca2+-activated K+ channels and Na+-
activated K+ channels), as well as of ionotropic 
glutamate receptor channels, have been proposed; 
and 3. K+ ionophores (mainly valinomycin) promote 
apoptotic signalling and cell death. As a corollary of 
this, an increase in the extracellular K+ concentrations, 
by decreasing the transmembrane K+ gradient and 
blocking K+ efflux, opposes apoptotic signalling and 
promotes cell survival. This phenomenon has been 
well described in cerebellar granule neurons, which 
are commonly cultured in the presence of elevated 
(15-25 mM) extracellular concentrations of K+; 
reducing this values to 5 mM promotes apoptosis, 
as testified by vacuole formation, nuclear pyknosis, 
volume shrinkage, and neurite retraction. Increasing 
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2014). It should be mentioned that several recent 
studies have suggested that Kv2.1 role in neuronal 
function might be unrelated to its ion-conducting 
ability; in fact, it has been proposed that Kv2.1 channel 
clusters may serve as voltage sensors of neuronal 
activity that convey changes in membrane potential 
to cytosolic signaling pathways, and that Kv2.1 
membrane clusters (the majority of which appear to 
be non-conducting in cultured hippocampal neurons) 
represent sites of depolarization-driven vesicle 
trafficking and neurotransmitter release (O’Connell 
et al., 2010; Fox et al., 2013), an observation also 
confirmed in neuroendocrine cells (Singer-Lahat et 
al., 2008). Other Kv channels which are involved in 
reducing neuronal excitability and cell death in the 
context of ischemic injury have also been identified. 
Among these, the resistance to anoxic cell death 
in large aspiny neurons in the striatum seems to 
be accounted for by the large expression of Kv1-
mediated delayed rectifying K+ currents (Deng et 
al., 2005). Similarly, in the same neurons, but not in 
medium spiny neurons which are more vulnerable 
to ischemic neuronal damage, an ischemic injury-
promoted rise in A-type K+ currents leading to a 
decreased excitability and excitotoxic cell death has 
also been reported (Deng et al., 2011). 

 In addition to classical voltage-gated channels, 
neuroprotective roles for other K+ channels have 
been firmly established. In particular, recent 
findings suggested small conductance Ca2+-
activated channels (SK/KCNN1-3/KCa2 channels) 
as regulators of microglial activation, thus linking 
neuroinflammation with neurodegeneration. SK/
KCa2 channels, by regulating Ca2+ homeostasis, may 
elicit a dual mechanism of action with protective 
properties in neurons and inhibition of inflammatory 
responses in microglia (Dolga and Culmsee, 2012). 
On the other hand, large conductance Ca2+-activated 
K+ channels (Slo1/BK channels), which are 
particularly abundant in axons and nerve terminals 
(Knaus et al., 1996; Misonou et al., 2006), where 
they stabilize the neuronal membrane potential 
and regulate excitatory neurotransmitter release 
(Raffaelli et al., 2004; Martire et al., 2010), have 
been extensively investigated. Activation of BK 
channels in ischemic cells could block Ca2+ entry 
from a number of potential sources and minimize 
neuronal depolarization. Opener-dependent 

epileptic challenge. Intriguingly, the toxic nitrogen 
radical species peroxynitrite mainly released from 
activated microglial cells, is also known to promote 
intracellular Zn2+ release leading to a remarkable 
augmentation of Kv2.1 current density (Knoch et al., 
2008). 

Recent research has suggested that changes in 
K+ channel activity may play a major pathogenetic 
role in Alzheimer’s disease (AD). In fact, β-amyloid 
fragments (Aβ), generated upon processing of the 
integral membrane amyloid precursor protein (Suh 
and Checler, 2002), alter the properties of K+currents 
in mammalian neurons (Jalonen et al., 1997; Yu et al., 
1998; Jhamandas et al., 2001; Ramsden et al., 2001; 
Pannaccione et al., 2005). We have more recently 
demonstrated that the Aβ peptide up-regulated the 
expression of Kv3.4 channel subunit and of the 
accessory subunit MIRP2. Thus, the increase in 
Kv3.4 functional activity appears to be involved in 
Aβ neurotoxicity (Pannaccione et al., 2007).

Neuroprotective Roles of K+ channels
As reported, one of the earliest events 

occurring in neurons exposed to a wide variety of 
neurodegenerative stimuli is the increased expression 
and function of various classes of K+ channels. 
However, whether this response is neurotoxic due 
to the enhanced loss of intracellular K+, or rather 
neuroprotective because of a decreased cellular 
excitability thereby limiting energetic expenses, is 
still matter of debate. In fact, in addition to results 
showing that Kv2.1 channels critically contribute to 
oxidant injury-induced neuronal apoptosis, emerging 
evidence indicate that the observed functional changes 
(channel dephosphorylation, hyperpolarizing shift 
in the voltage-dependence, and declustering) may 
reduce neuronal excitotoxicity in the context of an 
injurious stimulus. The hyperpolarizing shift in 
Kv2.1 channel voltage-gated activation is thought to 
reduce excitability and, consequently, excitotoxicity 
in neurons facing an ischemic or epileptic challenge. 
Sublethal chemical ischemia, which renders rat 
cortical neurons tolerant to subsequent NMDA 
receptor-mediated excitotoxicity, induces Kv2.1 
channel dephosphorylation and declustering, and 
produces a hyperpolarized shift in voltage-gated 
activation, implicating these channel modifications 
in promoting neuroprotection (Shah and Aizenmann, 
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a recent study, we have shown that leptin is endowed 
with significant neuroprotective effects in both rat 
and mouse cortical neurons exposed to NMDA; 
the pharmacological blockade of BK channels, or 
the lack of one (Slo1+/– mice) or both (Slo1–/– mice) 
Slo1 alleles fully counteracted leptin-mediated 
neuroprotection. Furthermore, [Ca2+]i monitoring 
in single mouse cortical neurons revealed that acute 
leptin application prompted an oscillatory behavior 
in [Ca2+]i. These results reveal that the activation 
of BK channels is an obligatory step for leptin-
induced neuroprotection, highlighting leptin-based 
intervention via BK channel activation as a potential 
strategy to treat neurodegenerative diseases (Mancini 
et al., 2014).

Mitochondrial K+ channels and neuronal 
preconditioning

Mitochondria are ubiquitous and dynamic 
organelles responsible for many crucial cellular 
processes in eukaryotic organisms. Being 
responsible for the production of over 90% of 
cellular ATP, the regulation of intracellular Ca2+ 
and redox signaling, mitochondria are considered 
the gatekeepers of life and death (Correia et al., 
2010). The inner membrane of mitochondria only 
shows a low diffusive permeability to most cations 
(including K+ ions), because ion leaks would short-
circuit the protonmotive force and ATP would not 
be synthesized. Nevertheless, cations leaks occur at 
significant rates in respiring mitochondria, and they 
are physiologically important. Inward K+ leak causes 
matrix swelling, and inward proton leak dissipates 
energy and contributes to the basal metabolic rate. 
The mitochondrial K+ cycle consists of several 
components. The electron transport system ejects 
protons, leading to generation of a protonmotive 
force, and to a membrane potential (ΔΨ) of about 
190 mV. This ΔΨ drives K+ by diffusion (“K+ leak”) 
and through K+-selective channels; K+ influx into the 
matrix is accompanied by an osmotic-guided entry 
of H2O, thus generating matrix swelling. It has been 
proposed that the mitochondrial K+ cycle plays a 
crucial role in the regulation of the mitochondrial 
volume, to prevent excessive swelling or contraction 
of the matrix, as well as in the regulation of reactive 
oxygen species (ROS) production (Garlid and 
Paucek, 2003). 

increases in channel function during ischemia may 
limit accumulation of potentially pathologic levels 
of Ca2+, reduce neurotransmitter release and energy 
expenditure and significantly attenuate infarct growth. 
As a matter of fact, BK openers such as BMS-204352 
have been successfully used in preclinical ischemia 
models, in which they showed significant reduction 
of brain damage (Gribkoff et al., 2001; Hewewasam 
et al., 2002), and attenuated cerebral edema and 
neurologic motor impairment in rats after traumatic 
brain injury (Cheney et al., 2001); however, despite 
its good tolerability profile, BMS-204352 failed 
to show superior efficacy in acute stroke patients 
when compared to placebo in a wide phase III study 
(Jensen, 2002). In organotypic hippocampal slice 
cultures (OHSCs), the pharmacological blockade 
of BK channels during OGD enhanced cell damage 
because of a large and prolonged increase in [Ca2+]
i (Rundén-Pran et al., 2002). Moreover, middle 
cerebral artery occlusion (MCAO) produced larger 
infarct volume and more severe neurological deficits 
in homozygous mice lacking BK channel alpha 
subunit when compared to wild-type mice; similarly, 
NMDA intracerebral injections caused larger 
neurotoxicity in homozygous mice compared to 
wild-type (Liao et al., 2010). These findings strongly 
support the idea that BK channels provide powerful 
neuroprotection against Ca2+ overload induced by 
several insults.

Neuroprotective actions of the adipokine leptin 
have been also shown to involve the activation of 
BK channels. In fact, leptin, in addition to a firmly 
established role in promoting appetite suppression 
and energy expenditure, is also known to exert 
neuroprotective effects in several in vitro and 
in vivo models of neurotoxicity (Signore et al., 
2008), including oxygen-glucose deprivation, 
hypoxia, ischemia, neurotrophic factor withdrawal, 
and excitotoxic or oxidative stimuli in neuronal 
populations from distinct brain areas (Dicou et al., 
2001; Zhang et al., 2007; Weng et al., 2007; Guo et 
al., 2008; Valerio et al., 2009;  Gavello et al., 2012). 
Among the molecular mechanisms responsible 
for the effects of leptin, neuronal silencing via K+ 
channels opening  appears to play a major role; in 
particular, BK channels have been shown to  mediate 
at least in part leptin effects on neuronal excitability 
and viability following neurotoxic stimuli. Indeed, in 
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electron transport chain and ATP synthesis. In fact, 
activation of mitoKATP channels has a protective 
effect against cerebral damage by reducing the 
accumulation of mitochondrial Ca2+ and preventing 
the formation of the mitochondrial permeability 
transition pore (MPTP; Fig. 2), an early event in 
programmed cell death (Wu et al., 2006); moreover, 
mitoKATP activation has been also shown to increase 
the levels of Bcl2 and to inhibit the association of 
Bax with mitochondria in neurons exposed to an 
apoptotic insult, suggesting that mitoKATP activation 
may stabilize mitochondrial function by differentially 
modulating proapoptotic and antiapoptotic proteins 
(Liu et al., 2002). However, the exact sequence of 
events by which mitoKATP become activated during 
ischemic preconditioning and the molecular events 
which, following their activation, mediate the 
increased resistance of neuronal cells to neurotoxic 
triggers are yet unknown.

On the other hand, mitoBKCa channels were 
initially described in the human glioma cell line 
LN229 by electrophysiological experiments (Siemen 
et al., 1999), and later also in heart (Xu et al., 2002) 
and brain (Douglas et al., 2006) mitochondria. These 
channels are activated by Ca2+ (hence their  name) 
and by NS1619 (at mM concentrations), whereas, 
similarly to plasma membrane BKCa channels, they 
are blocked by charibdotoxin (ChTx), iberiotoxin 
(IbTx), and paxilline (at nM concentrations). 
mitoBKCa appear to be a molecular link between 
the signals mediated by cellular/mitochondrial Ca2+ 
and that dependent on the mitochondrial membrane 
potential: in fact, changes in intramitochondrial 
Ca2+ levels directly affect the permeability of 
the inner mitochondrial membrane to K+, which 
results in a Ca2+-dependent modulation of the 
membrane potential and, as a result, of the oxidative 
phosphorylation. However, the lack of selective 
modulators for mitoBKCa channels is a serious 
limitation when interpreting the pharmacological 
preconditioning obtained in neurons with NS1619, 
as none of these effects could be antagonized with 
any of the traditional BKCa channel blockers (Busija 
et al., 2008).

Molecular pathophysiology of Kv7 channels
Among Kv channels, the Kv7 family encompasses 

five members (from Kv7.1 to Kv7.5), each showing 

The term “preconditioning” identifies the ability of 
a previous transient, sublethal insult to protect against 
a subsequent potentially lethal stimulus. Recent 
studies have established that mitochondrial-centered 
mechanisms are important mediators in promoting 
development of the preconditioning response. 
Among the mitochondrial mechanisms involved in 
neuronal preconditioning, K+ channels located on 
the inner mitochondrial membrane have received 
considerable attention in the last 15 years. Several 
different K+ channels have been identified in the inner 
mitochondrial membrane and their activation may 
initiate neuronal preconditioning. Activation of these 
channels allows K+ ions to flow into mitochondria 
and results in depolarization. The two most likely 
targets of preconditioning are the ATP-sensitive K+ 
(mitoKATP) and the large conductance Ca2+ activated 
K+ (mitoBKCa) channels. While there is extensive 
evidence for the existence and importance of the 
mitoKATP channels in neuronal preconditioning, there 
is speculation that the mitoKCa channels, if present, 
are not involved in neuronal preconditioning (Busija 
et al., 2008).

MitoKATP channels have been first identified in brain 
mitochondria in 2001 (Bajgar et al., 2001). Similarly 
to their plasma membrane counterparts, mitoKATP 
channels consist of two subunits, called mitoKIR (KIR 
6.2) and mitoSUR (receptor of sulfonylureas), both 
possible pharmacological targets (Garlid et al., 2003). 
Functional studies demonstrated that oxidative stress, 
antihypertensive drugs (diazoxide and, although 
much less potently, cromakalin), and the general 
anesthetic isoflurane (Nakae et al., 2003) activate 
mitoKATP channels, whereas these channels are 
inhibited by the selective blocker 5-hydroxydecanoic 
(5-HD) (Liu et al., 2002) and by sulphonylureas oral 
hypoglycemic agents such as glyburide (Jabůrek et 
al., 1998). MitoKATP channels can be activated by 
many signaling pathways; in particular, it has been 
proposed that mitoKATP channels are activated by 
phosphorylation by one of the pKC isoforms (protein 
kinase C epsilon; εPKC); mitochondrial εPKC levels 
significantly increase in rat hippocampus, suggesting 
an anti-apoptotic function of this kinase, protecting 
mitochondrial functions, through a mechanism 
involving mitoKATP channel activation (Raval et al., 
2007). Activation of mitoKATP channels, decreasing 
mitochondrial ΔΨ, would increase the activity of the 
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or heterotetrameric assembly of Kv7.2 and Kv7.3 
subunits, with possible additional contribution from 
Kv7.4 and Kv7.5 subunits at specific neuronal sites, 
represents the molecular basis of the M-current (IKM), 
a slowly activating and deactivating K+ current highly 
regulated by Gq/11-coupled receptors (Delmas and 
Brown, 2005). IKM regulates membrane excitability in 
the sub-threshold range for action potential generation, 
acting as a brake for neuronal firing; indeed, reduction 

a different tissue distribution and physiological role 
(Soldovieri et al., 2011) (Fig. 3). Indeed, Kv7.1 is 
manly expressed in the heart, pancreas, thyroid gland, 
brain, gastrointestinal tract, portal vein, and the inner 
ear. In cardiac myocytes, in association with the 
accessory subunit KCNE1, Kv7.1 underlies IKs, a slow 
K+-selective current involved in the late phase of action 
potential repolarization. Kv7.2, Kv7.3, Kv7.4, and 
Kv7.5 show prevalently neuronal localization; homo- 
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Fig. 1. “KCN” K+ channel families. Phylogenetic tree of human K+ channels using the “KCN” nomenclature of the 
“Human Genome Organization.” For simplicity, the letter code for K+ channels (KCN) has been omitted (e.g., KCNA1 is 
depicted as A1). The tree has been constructed using “UPGMA” (http://bibiserv.techfak.uni-bielefeld.de/dialign/) based 
on DIALIGN fragment weight scores on full length protein sequences. In case of splice variants, transcript variant 1 
(according to NCBI) has been used for the alignment. Modified from Heitzmann and Warth (2008). 
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Fig. 2. Potential mechanisms responsible for the neuroprotective and neurogenerative responses involving plasma 
membrane and mitochondrial K+ channels. 

Fig. 3. Pathophysiological roles of the five members of the KCNQ (Kv7) family of voltage-gated K+ channels. Modified 
from Soldovieri et al. (2011).
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or months (Plouin, 1994). Although neurocognitive 
development is normal in most BFNS-affected 
individuals, follow-up studies have revealed that 
seizures or other neurological or neuropsychiatric 
abnormalities can occur in up to 15% of the patients 
(Dedek et al., 2001; Coppola et al., 2003; Wuttke 
et al., 2007). BFNS-causing mutations are 10 times 
more likely to be found in Kv7.2 than in Kv7.3; all 
Kv7.3 mutations described to date are missense, 
whereas Kv7.2 mutations consist of truncations, 
splice site defects, or missense, non-sense and frame-
shift mutations, as well as sub-microscopic deletions 
or duplications (Heron et al., 2007; Soldovieri et 
al., 2007). Kv7.2 mutations have been also detected 
in sporadic cases of benign neonatal seizures (Ishii 
et al., 2009; Sadewa et al., 2008; Miceli et al., 
2009). Following several reports questioning the 
benignity of the clinical course in BFNS patients 
(Steinlein et al., 2007), de novo missense Kv7.2 
mutations have been more recently found in neonates 
affected with pharmacoresistant seizures, distinct 
EEG and neuroradiological features, and various 
degrees of developmental delay, defining a “Kv7.2 
encephalopathy” (Weckhuysen et al., 2012). De novo 
missense Kv7.2 mutations have been also shown as 
one of the most common cause of early-onset EEs, 
including the Ohtahara syndrome (Saitsu et al., 
2012; Kato et al., 2013), the most severe and earliest 
developing age-related EE, and it is now believed that 
they account for at least 15-25% of sporadic cases of 
neonatal-onset epileptic encephalopathy. 

Kv7 channels in neurodegeneration
The role of Kv7 channels in the regulation of 

cell death/survival, or protection from damage in 
neurons, in particular in the hippocampus, has been 
investigated in various experimental studies. Such 
studies do not clearly establish a neuroprotective or 
neurodegenerative role for Kv7 channels, possibly 
because of the different experimental models 
used. Earlier reports showed that two M-type K+ 
channel blockers, linopirdine and its analog XE991, 
promoted survival of rat sympathetic neurons 
deprived of nerve growth factor (Xia et al., 2002). 
More recently, the same Authors demonstrated that 
Kv7.2/3 channel openers N-ethylmaleimide (NEM) 
and the non-opioid analgesic drug flupirtine caused 
dose-dependent K+ efflux, intracellular K+ depletion, 

of this current is often sufficient to increase neuronal 
excitability. Kv7.4 subunits are mainly expressed in 
cochlear and vestibular organs of the inner hear, as well 
as in central auditory pathways (Kubisch et al., 1999); 
more recent work has revealed expression of Kv7.4 
subunits also in skeletal muscle (Iannotti et al., 2010), 
as well as in visceral and vascular smooth muscle 
(Greenwood and Ohya, 2009). Kv7.5 expression, in 
addition to the brain, has been also detected in human 
adult skeletal muscle (Lerche et al., 2000; Schroeder 
et al., 2000), and, together with Kv7.1 and Kv7.4, in 
vascular smooth muscle cells (Yeung et al., 2007).

The pathophysiological importance of these 
channels is emphasized by the fact that mutations in 
four of the five Kv7 genes are associated to different 
hereditary channelophaties in humans. In particular, 
mutations in Kv7.1 have been found in families 
affected by arrythmogenic diseases such as dominant 
(the Romano-Ward syndrome) and recessive (the 
Jervell and Lange-Nielsen syndrome) chromosome 
11-linked form of the Long QT syndrome (Wang 
et al., 1996), and the short QT syndrome (Bellocq 
et al., 2004). More recently, single nucleotide 
polymorphisms in Kv7.1 have been suggested to 
confer susceptibility to type 2 diabetes (Unoki et 
al., 2008). Mutations in Kv7.4 underlie a rare form 
of deafness (DFNA2), characterized by symmetric, 
predominantly high-frequency sensorineural hearing 
loss that is slowly progressive across all frequencies 
(Kubisch et al., 1999). 

Mutations in Kv7.2 (KCNQ2) and Kv7.3 (KCNQ3) 
genes, encoding for voltage-gated K+ channel subunits 
underlying most of the neuronal IKM (Wang et al., 1998), 
are responsible for early-onset epileptic diseases with 
a widely-diverging phenotypic presentation. Earlier 
studies revealed that Kv7.2 (Biervert et al., 1998; 
Singh et al., 1998) or, more rarely, Kv7.3 (Charlier 
et al., 1998) gene defects are responsible for Benign 
Familial Neonatal Seizures (BFNS), an autosomal-
dominant epilepsy of newborns. BFNS-affected 
patients suffer from recurrent seizures that begin 
in the very first days of life and remit after a few 
weeks or months, with mostly normal interictal EEG, 
neuroimaging, and psychomotor development (Bellini 
et al., 2010). BFNS is characterized by the occurrence 
of focal, multifocal or generalized unprovoked tonic-
clonic convulsions starting around day 3 of post-natal 
life and spontaneously disappearing after few weeks 
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to this study, neuroprotective effects of flupirtine and 
retigabine are more noticeable in some hippocampal 
areas such as dentate gyrus, a brain region showing 
remodelling after chronic epileptogenic stimuli. 

Flupirtine- and retigabine-induced neuroprotection 
has also been observed in two “in vivo” models of 
ischemia, namely the four vessels occlusion (4-VO) 
rat (Block et al, 1997) and a mouse model of cerebral 
photo-induced thrombosis (Bierbower et al, 2011); in 
both animal models, these drugs reduced infarct area 
and/or the subsequent related cognitive impairment. 
In support of a neuroprotective role of Kv7-mediated 
neuronal silencing during neuronal degeneration, is 
also a recent study investigating the molecular basis 
for the degeneration of hair cells and spiral ganglion 
neurons (SGNs) in DFNA2, an autosomal dominant 
version of progressive hearing loss, caused by 
mutations in Kv7 currents channels (Lv et al., 2010). 
In this study, it was found that a long-term inhibition 
of Kv7 currents caused a sustained increase in [Ca2+]i 
leading to significant SGN apoptotic death. 

In support of a protective role of neuronal silencing 
during neurodegenerative conditions is also the 
observation that drugs developed for the treatment of 
epilepsy are endowed with significant neuroprotective 
effects. The rationale underlying this approach is that 
pharmacological targets of AEDs may have a role 
in determining neuronal damage after an injury. For 
instance, excitotoxicity is a common event after both 
brain ischemia and epilepsy (Costa et al., 2006). For 
these reasons, by decreasing excitatory transmission 
or enhancing inhibitory neurotransmitter release, 
AEDs might counteract abnormal brain excitability 
and represent a valid tool against the activation of 
deleterious mechanisms leading to neuronal cell 
death. Indeed, it has been recently demonstrated that 
tiagabine and vigabatrin (GABAergic AEDs) produce 
neuroprotection against in vitro ischemia (Costa et al., 
2004). Similarly, other AEDs such as lamotrigine and 
remacemide (Calabresi et al., 2003; Willmore, 2005) 
or carbamazepine, valproic acid, topiramate and 
levetiracetam (Willmore, 2005; Costa et al., 2006) 
exert neuroprotection against in vitro ischemia.

CONCLUSIONS

The critical role played by K+-selective channels 
in the control of neuronal excitability is well known; 

caspase-3 activation, and cell death in hippocampal 
cultures, whereas little cell death was induced by NEM 
in cortical cultures. This differential vulnerability 
between hippocampal and cortical cultures appeared 
to be related to IKM expression, whose size was larger 
in cultured hippocampal neurons when compared 
to cortical neurons. NEM-induced cell death was 
antagonized by the Kv7 channel inhibitor XE991, or 
by elevated extracellular K+ concentration. NEM-
induced cell death appeared to be of the apoptotic 
type, as revealed by the occurrence of mitochondria 
membrane depolarization, cytochrome c release, 
formation of apoptosome complex, and apoptosis-
inducing factor (AIF) translocation into the nucleus; 
all these events were attenuated by blocking Kv7.2/3 
channels (Zhou et al, 2011). By contrast, Gamper 
and collaborators (2006) demonstrated that reactive 
oxygen species (ROS), which are increased during 
ischemic damage and in other neurodegenerative 
diseases, activate three of five Kv7 channels 
(Kv7.2, Kv7.4, and Kv7.5); consistent with the role 
of IKM in neuronal excitability, oxidation-induced 
enhancement of IKM produced a hyperpolarization 
and a dramatic reduction of action potential firing 
frequency in rat sympathetic neurons. The same 
Authors also showed that blockade of IKM with XE991 
dramatically increased OGD-induced neuronal death 
in organotypic hippocampal slices (OHSCs), but did 
not affect survival of normoxic slices; moreover, the 
IKM enhancer retigabine decreased OGD-induced 
neuronal death. These data suggest that M channels 
participate in cytoprotective neuronal silencing in an 
oxidative stress-related model of neurodegeneration. 
Other studies have pointed out the neuroprotective 
effects of IKM-activators (retigabine and flupirtine) 
in different experimental models, such as OHSC 
exposed to N-methyl-D-aspartate (NMDA), oxygen 
and glucose deprivation followed by reoxygenation 
(OGD), or serum withdrawal (SW) (Boscia et al, 
2006). Region-specific vulnerability of hippocampal 
subfields occurred with each of these injury models. 
Specifically, CA1 was the most susceptible region to 
both NMDA and OGD-induced neurodegeneration, 
whereas selective cell death in the dentate gyrus 
(DG) occurred upon OHSCs exposure to SW. 
However, in these models the neuroprotective effects 
of IKM activators seem to be due to an anti-oxidant 
action more than a direct activation of IKM. According 
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however, their participation in cell survival or death 
has received much less attention when compared 
to Ca2+ channels or ionotropic glutamate receptors. 
This is perhaps due to the conflicting evidence 
showing on one side that a loss of intracellular 
K+ causes the activation of death-triggering 
phenomena, whereas on the other hand that their 
activation leads to neuronal silencing and cellular 
protection; some of the mechanisms mentioned 
in the text are schematically represented in Fig. 
2. A better understanding of these complex roles,
herein briefly reviewed, is likely to improve the
treatment of a variety of neurodegenerative diseases,
ranging from acute hypoxia-ischemia to slowly-
progressing Alzheimer disease. In this perspective,
the development of novel pharmacological tools
provided of a higher degree of selectivity for specific
classes of K+ channels involved in the various
molecular steps of neuroprotective responses is
likely to be a major leap forward.
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