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ABSTRACT 

Alzheimer’s disease (AD) is the leading cause of dementia globally. It is a progressive and irreversible neurologic 

disorder that results in personality changes, memory loss, cognitive decline, and death. Hallmarks of the disease include 

extracellular amyloid-β (Aβ) plaque deposition, the accumulation of neurofibrillary tangles (NFTs) of 

hyperphosphorylated tau, and neuroinflammation. Aβ plaque deposition is believed to be central to the pathogenesis of 

AD. Activation of microglia, innate immune cells of the central nervous system, can have both beneficial and harmful 

consequences, as they are able to aid in Aβ plaque clearance, but also release damaging pro-inflammatory cytokines. 

Microglial cells are involved with Aβ plaque formations and may play a central role in AD pathogenesis. Diverse gene 

networks implicating microglia and affecting immune function have been identified, including microglial receptors 

triggering receptors expressed on myeloid cells 2 (TREM2) and CD33. Both are considerable risk factors for the 

development of late-onset AD and in this paper, we summarize their role, and that of microglia, in the inflammation 

occurring in AD. 
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INTRODUCTION 

Alzheimer’s disease (AD) is a progressive neurologic disorder and the leading cause of dementia worldwide (1). Most 

cases are late-onset, usually occurring after the age of 65 (2). It is characterized by extracellular amyloid-β (A) plaque 

deposition and the accumulation of neurofibrillary tangles (NFTs) of hyperphosphorylated tau. Symptoms include 

memory loss, changes in personality and behavior, progressive cognitive decline, and eventually, death. Genetic changes 

can cause AD to an extent. 

AD is complex, but different theories exist to explain the mechanisms involved. The most predominant is the A 

cascade hypothesis, focusing on A accumulation as the fundamental element in AD development (3). It theorizes that 

A groups form plaques on the outside of brain neurons, followed by inflammation and NFTs of tau protein, eventually 

leading to neuronal death, which then results in neurodegeneration. Evidence has suggested that the inability to clear A 

is central to AD pathogenesis, rather than the overproduction of A (4). 

Neuroinflammation is another hallmark of AD, with elevated expression of inflammatory mediators, and microglia 

and astrocytes showing changes in morphology, activation, and distribution (5, 6). Microglia are innate immune cells 

resident in the central nervous system (CNS), responsible for immune surveillance and mediation. They are important for 
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tissue repair and damage control, but their response can also be detrimental to the release of pro-inflammatory substances. 

It is believed that inflammation mediated by microglia plays a central role in the progression of AD, but the process is 

complex and the exact mechanisms by which this occurs is still unclear. 

CD33 and triggering receptor expressed on myeloid cells 2 (TREM2) are microglial receptors that regulate 

inflammation in AD and are associated risk factors. In this paper we summarize the pathogenesis of late onset AD with a 

focus on the role of microglia in inflammation and the involvement of CD33 and TREM2. 

Microglial cells 

In the brain, microglia have functions similar to macrophages, providing immune surveillance and tissue maintenance. 

Microglial cells and A formation is linked. Microglia protect the CNS by helping to clear A plaque formations, yet 

fibrillar A can activate microglia, leading to the release of inflammatory mediators, such as pro-inflammatory cytokines, 

that can be damaging to the CNS (7). 

Microglia are plastic, with the ability to change phenotype in response to stimuli and interact with neurons to mediate 

the immune environment (8). They show branching dynamics, the capability to expand and retract into neighboring tissue, 

which allows for continuous immune surveillance and rapid convergence to an injury site (9). This includes the response 

to A plaque that occurs with AD. 

A plaque formation can activate microglia to an inflammatory phenotype, as seen in animal models (10,11). 

Microglia congregate to A deposits, mostly converging at the sites of densely concentrated plaques, with fewer observed 

in unconcentrated surrounding areas (12,13). Microglia are attracted to plaque, congregating around formations, and 

increasing and growing over time (14-16). 

Surface cell receptor and toll-like receptor (TLR)-detection of intracellular proteins and damage-associated molecular 

patterns (DAMP) molecules initiate the innate immune response to injury. Interestingly, increased expression of CD14 

(17), TLR2, and TLR4 (18) by microglia has been seen in the AD brain (19). 

In the AD brain, deposition of fibrillar forms of Aβ occurs, activating microglia through a cell surface receptor 

complex that includes the B-class scavenger receptor CD36, the integrin-associated protein/CD47, and the α6β1-integrin 

(20). This leads to signaling cascades, and the defensive reaction of activated microglia includes the production of free 

radicals and the release of pro-inflammatory cytokines that can contribute to CNS injury. The inflammation that occurs 

is thought to be integral in the progression of the disease. In fact, microglial activation in AD brains has been associated 

with elevated levels of cytokines and chemokines, such as interferon γ (IFNγ), tumor necrosis factor (TNF), interleukin 

1β (IL-1β), interleukin 6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1) (21-24). 

In their role as principal immune effectors, microglia participate in phagocytosis, removing and clearing targets such 

as pathogens, apoptotic cells, and cellular debris. Microglia can internalize fibrillar forms of Aβ, but degradation and 

complete clearance is not always effective (25-27). Diverse studies have shown that inflammation may negatively 

interfere with the ability of microglial cells to clear Aβ plaques (28-30). 

Additionally, microglia cell surface receptors are important for Aβ recognition and subsequent response (31). 

Microglia require the triggering receptor TREM2 for the phagocytosis of certain substrates, including Aβ (32). TREM2-

deficient microglia were seen to remain inactivated and not congregate around Aβ plaques (33,34) (Fig.1). 
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Fig. 1. Amyloid-β (Aß) groups to form plaques on the outside of brain neurons, causing neuronal damage. Aß plaque 

deposition activates microglial cells, which congregate to sites of Aß plaque formation and release free radicals and pro-

inflammatory cytokines, leading to inflammation and subsequent neuronal damage. 

Genetic risk factors 

Heritability for late onset AD is high, does not differ by sex, and is estimated to be between 58-79% in twin studies 

(35). Apolipoprotein E ε4 (APOE ε4) was the first confirmed genetic risk factor (36), until recently when many different 

genes have been identified to be associated with the development of AD, numerous of which are also associated with 

inflammation and microglia (37). Some of these gene networks that are closely tied to the immune system, such as CR1, 

SPI1, the MS4As, TREM2, ABCA7, CD33, and INPP5D, are expressed by microglia (37). This supports the role that 

neuroinflammation plays in the development of AD. 

Microglial receptors TREM2 and CD33, which are involved in immune function activation and are associated with 

one another, are of particular interest in AD. CD33 is one of the top-ranked genes for risk of AD and is exclusively 

expressed in microglia. Rare variants of TREM2 are a considerable risk factor and can increase the risk of developing 

AD by 2-4 times (5). 

CD33 

CD33 is a transmembrane myeloid cell receptor that is expressed in microglia and macrophages in the brain, with the 

ability to inhibit immune cell functions. In genome-wide association studies, CD33 has been identified as one of the 

greatest risk factors for AD (38-40), with two variants posing the highest risk, rs3865444 and rs12459419 (41,42). 

Studies have suggested that CD33 is involved in diverse immune functions, including cell adhesion processes, 

endocytosis, immune cell growth, TLR4 signaling, and can inhibit the release of cytokines (43-45). 

It is believed that its expression regulates the activation of microglia and interferes with the clearance of Aβ by 

inhibition, with Aβ plaque formation resulting in turn (46). CD33 is increased in the brain with AD, correlated with 

disease severity as well as the extent of Aβ plaque formation (47). The T allele of single-nucleotide polymorphism (SNP) 

rs3865444 has been associated with decreased CD33 levels and Aβ plaque burden in the brain (45), and the C allele was 

associated with increased CD33 levels and Aβ plaque burden (48). 

Evidence shows that CD33 may inhibit the production of pro-inflammatory cytokines such as IL-1β, TNF, IL-8, and 

furthermore, increased TNF secretion by immune cells was seen with the downregulation of CD33 (49). Animal studies 

have also revealed evidence, as mice without CD33 showed greatly reduced Aβ plaque levels (45). 

Because CD33 inhibits Aβ clearance, subsequently generating the formation of Aβ plaques, targeting CD33 could be 

a therapeutic opportunity in AD. 

TREM2 
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TREM2 is a triggering receptor expressed on myeloid cells, and microglia are responsible for TREM2 expression in 

the CNS, where it is associated with inflammation (5). It can suppress the production of pro-inflammatory cytokines and 

promote phagocytosis of Aβ plaque by microglia (50,51). 

TREM2 expression is increased by the expression of anti-inflammatory molecules, while pro-inflammatory ones, such 

as TNF and IL-1, decrease its expression (51,52). Microglial aggregation to Aβ plaques causes upregulation of TREM2, 

which has been reported in animal models and humans (53,54). TREM2 upregulation is also associated with aging (55). 

TREM2 binds to Aβ, is involved in microglial activation and degradation of Aβ, and mediates the microglial 

expression of cytokines (56). TREM2 expression promotes phagocytosis by microglia, which has been seen in studies 

correlating increased expression with increased phagocytosis (50,57), and decreased phagocytosis with TREM2 loss 

(58,59). TREM2 moderates microglial functions and binds to Aβ, and mutations of TREM2 in AD reduce Aβ binding 

(56). TREM2 also modulates inflammation by signaling and has anti-inflammatory effects (50), although some studies 

seem to show an association with pro-inflammatory effects as well (60,61). Lastly, TREM2 affects the proliferation and 

survival of myeloid cells, including microglia (59). 

TREM2 variants are a significant risk factor for late-onset AD. Rs75932628 is a common TREM2 gene variant risk 

factor. It has been identified in European and North American populations in diverse studies but cannot be confirmed in 

Chinese communities (62-65).  

CONCLUSIONS 

AD is a prevalent and highly complex neurodegenerative disorder. Increasing evidence suggests that inflammation 

plays a vital role in the development of the pathogenesis of the disease. Aβ plaque deposition is thought to be a 

fundamental characteristic of AD. The inability to effectively clear Aβ plaque formations is likely the key to disease 

progression, rather than Aβ overproduction. Microglia and Aβ are closely associated, with the formation of Aβ plaques 

activating microglia and causing microglial congregation. Microglia aid in phagocytosis and clearance of Aβ but can also 

release harmful pro-inflammatory cytokines. 

Heritability is high and diverse genes have been identified that implicate microglia and immune function in the 

development of AD. Microglial receptors CD33 and TREM2 are involved in immune function and are two significant 

risk factors for AD development. 
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